Minimum supports of eigenfunctions in bilinear forms graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 501-515.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study eigenfunctions corresponding to the minimum eigenvalue of bilinear forms graphs. Our main goal is to find eigenfunctions with the supports (non-zero positions) of minimum cardinality. For bilinear forms graphs of diameter $D=2$ over a prime field we prove that there exist eigenfunctions with the support achieving the weight distribution bound. We also provide an explicit construction of such functions. For bilinear forms graphs of diameter $D\ge 3$ we show the non-existance of eigenfunctions with supports achieving the weight distribution bound.
Keywords: bilinear forms graph, eigenfunctions, minimum supports, distance-regular graphs.
@article{SEMR_2019_16_a65,
     author = {E. V. Sotnikova},
     title = {Minimum supports of eigenfunctions in bilinear forms graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {501--515},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a65/}
}
TY  - JOUR
AU  - E. V. Sotnikova
TI  - Minimum supports of eigenfunctions in bilinear forms graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 501
EP  - 515
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a65/
LA  - en
ID  - SEMR_2019_16_a65
ER  - 
%0 Journal Article
%A E. V. Sotnikova
%T Minimum supports of eigenfunctions in bilinear forms graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 501-515
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a65/
%G en
%F SEMR_2019_16_a65
E. V. Sotnikova. Minimum supports of eigenfunctions in bilinear forms graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 501-515. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a65/

[1] C. Chevalley, “Démonstration d'une hypothèse de M. Artin”, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 11 (1935), 73–75 (in French) | DOI | MR

[2] A.J. Hoffman, “On eigenvalues and colourings of graphs”, Graph Theory and Its Applications, ed. B. Harris, Acad. Press, New York, 1970, 79–91 | MR

[3] G.D. James, Representations of general linear groups, LMS Lecture Note Series, 94, Cambridge University Press, 1984 | MR | Zbl

[4] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg, 1989 | MR | Zbl

[5] S. Cho, “Minimal null designs of subspace lattice over finite fields”, Linear algebra and its applications, 282 (1998), 199–220 | DOI | MR | Zbl

[6] S. Cho, “On the support size of null designs of finite ranked posets”, Combinatorica, 19:4 (1998), 589–595 | DOI | MR

[7] S. Bang, A. Hiraki, J.H. Koolen, “Delsarte clique graphs”, European Journal of Combinatorics, 28 (2007), 501–516 | DOI | MR | Zbl

[8] R. Elman, N. Karpenko, A. Merkurjev, The algebraic and geometric theory of quadratic forms, American Mathematical Society Colloquium Publications, 2008 | DOI | MR | Zbl

[9] D. S. Krotov, “On weight distributions of perfect colorings and completely regular codes”, Des. Codes Cryptogr., 61:3 (2011), 315–329 | DOI | MR | Zbl

[10] V.N. Potapov, “On perfect 2-colorings of the $q$-ary $n$-cube”, Discrete Math., 312:6 (2012), 1269–1272 | DOI | MR | Zbl

[11] Diskretn. Anal. Issled. Oper., 21:6 (2014), 3–10 | DOI | MR | MR | Zbl

[12] D.S. Krotov, I. Yu. Mogilnykh, V.N. Potapov, “To the theory of $q$-ary Steiner and other-type trades”, Discrete Math., 339:3 (2016), 1150–1157 | DOI | MR | Zbl

[13] D.S. Krotov, “Trades in combinatorial configurations”, Proc. 12 Int. seminar “Discrete Mathematics and Its Applications” (Moscow, 20–25 June 2016), ed. O. M. Kasim-Zade, MSU, M., 2016, 84–96 (in Russian) | MR

[14] A.A. Valyuzhenich, “Minimum supports of eigenfunctions of Hamming graphs”, Discrete Math., 340:5 (2017), 1064–1068 | DOI | MR | Zbl

[15] A. Valyuzhenich, K. Vorob'ev, “Minimum supports of functions on the Hamming graphs with spectral constraints”, Discrete Math., 342:5 (2019), 1351–1360 | DOI | MR | Zbl

[16] K. Vorob'ev, I. Mogilnykh, A. Valyuzhenich, “Minimum supports of eigenfunctions of Johnson graphs”, Discrete Math., 341:8 (2018), 2151–2158 | DOI | MR | Zbl

[17] E.A. Bespalov, “On the minumum supports of some eigenfunctions in the Doob graphs”, Siberian Electronic Mathematical Reports, 15 (2018), 258–266 | MR | Zbl

[18] S. Goryainov, V.V. Kabanov, L. Shalaginov, A. Valyuzhenich, “On eigenfunctions and maximal cliques of Paley graphs of square order”, Finite Fields and Their Applications, 52 (2018), 361–369 | DOI | MR | Zbl

[19] E.V. Sotnikova, “Eigenfunctions supports of minimum cardinality in cubical distance-regular graphs”, Siberian Electronic Mathematical Reports, 15 (2018), 223–245 | MR | Zbl