Minimum supports of eigenfunctions in bilinear forms graphs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 501-515

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study eigenfunctions corresponding to the minimum eigenvalue of bilinear forms graphs. Our main goal is to find eigenfunctions with the supports (non-zero positions) of minimum cardinality. For bilinear forms graphs of diameter $D=2$ over a prime field we prove that there exist eigenfunctions with the support achieving the weight distribution bound. We also provide an explicit construction of such functions. For bilinear forms graphs of diameter $D\ge 3$ we show the non-existance of eigenfunctions with supports achieving the weight distribution bound.
Keywords: bilinear forms graph, eigenfunctions, minimum supports, distance-regular graphs.
@article{SEMR_2019_16_a65,
     author = {E. V. Sotnikova},
     title = {Minimum supports of eigenfunctions in bilinear forms graphs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {501--515},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a65/}
}
TY  - JOUR
AU  - E. V. Sotnikova
TI  - Minimum supports of eigenfunctions in bilinear forms graphs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 501
EP  - 515
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a65/
LA  - en
ID  - SEMR_2019_16_a65
ER  - 
%0 Journal Article
%A E. V. Sotnikova
%T Minimum supports of eigenfunctions in bilinear forms graphs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 501-515
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a65/
%G en
%F SEMR_2019_16_a65
E. V. Sotnikova. Minimum supports of eigenfunctions in bilinear forms graphs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 501-515. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a65/