@article{SEMR_2019_16_a62,
author = {I. N. Belousov and A. A. Makhnev},
title = {Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {206--216},
year = {2019},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a62/}
}
TY - JOUR
AU - I. N. Belousov
AU - A. A. Makhnev
TI - Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2019
SP - 206
EP - 216
VL - 16
UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a62/
LA - ru
ID - SEMR_2019_16_a62
ER -
I. N. Belousov; A. A. Makhnev. Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 206-216. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a62/
[1] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl
[2] A.E. Brouwer, S. Sumaloj, C. Worawannotai, “The nonexistence of distance-regular graphs with intersection arrays $\{27,20,10;1,2,18\}$ and $\{36,28,4;1,2,24\}$”, Australasian J. Comb., 66 (2016), 330–332 | MR | Zbl
[3] I.N. Belousov, A.A. Makhnev, “Distance-regular graphs with intersection arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Siberian Electronic Mathematical Reports, 15 (2018), 1506–1512 | MR
[4] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR | Zbl
[5] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl