Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 206-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Distance-regular graph $\Gamma$ of diameter 3 is called Shilla graph if $\Gamma$ containes the second eigenvalue $\theta_1=a_3$. In this case $a=a_3$ devides $k$ and we set $b=b(\Gamma)=k/a$. Koolen and Park obtained the list of intersection arrays for Shilla graphs with $b=3$. A. Brouwer with coauthors proved that graph with intersection array $\{27,20,10;1,2,18\}$ does not exist. $Q$-polinomial Shilla graph with $b=3$ has intersection array $\{42,30,12;1,6,28\}$ or $\{105,72,24;1,12,70\}$. Early authors proved that graph with intersection array $\{42,30,12;1,6,28\}$ does not exist. We prove that graph with intersection array $\{105,72,24;1,12,70\}$ does not exist.
Keywords: distance-regular graph, Shilla graph, triple intersection numbers.
@article{SEMR_2019_16_a62,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {206--216},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a62/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 206
EP  - 216
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a62/
LA  - ru
ID  - SEMR_2019_16_a62
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 206-216
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a62/
%G ru
%F SEMR_2019_16_a62
I. N. Belousov; A. A. Makhnev. Distance-regular graph with intersection array $\{105,72,24;1,12,70\}$ does not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 206-216. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a62/

[1] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR | Zbl

[2] A.E. Brouwer, S. Sumaloj, C. Worawannotai, “The nonexistence of distance-regular graphs with intersection arrays $\{27,20,10;1,2,18\}$ and $\{36,28,4;1,2,24\}$”, Australasian J. Comb., 66 (2016), 330–332 | MR | Zbl

[3] I.N. Belousov, A.A. Makhnev, “Distance-regular graphs with intersection arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist”, Siberian Electronic Mathematical Reports, 15 (2018), 1506–1512 | MR

[4] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr., 65:1–2 (2012), 29–47 | DOI | MR | Zbl

[5] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR | Zbl