On the curves with affine congruent arcs in affine space
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1612-1622.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in the article that the only curves with affine congruent arcs in the affine space are straight lines, parabolas, cubics.
Keywords: curve with affine congruent arcs, straight line, cubica, enica, moment curve, Veronese curve.
Mots-clés : parabola
@article{SEMR_2019_16_a60,
     author = {I. V. Polikanova},
     title = {On the curves with affine congruent arcs in affine space},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1612--1622},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a60/}
}
TY  - JOUR
AU  - I. V. Polikanova
TI  - On the curves with affine congruent arcs in affine space
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1612
EP  - 1622
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a60/
LA  - ru
ID  - SEMR_2019_16_a60
ER  - 
%0 Journal Article
%A I. V. Polikanova
%T On the curves with affine congruent arcs in affine space
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1612-1622
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a60/
%G ru
%F SEMR_2019_16_a60
I. V. Polikanova. On the curves with affine congruent arcs in affine space. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1612-1622. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a60/

[1] I.V. Polikanova, “On the curves with affine congruent arcs in $n$-dimencional affine space”, Collected articles of scientific conference “MAK-2015: Mathematicians for Altay Region” (Barnaul, 2015), 34–38

[2] I.V. Polikanova, “On flat curves with affine congruent arcs”, Siberian Electronic Mathematical Reports, 15 (2018), 882–889 | MR | Zbl

[3] I.V. Polikanova, “Some properties of curves with affine congruet arcs”, Proceedings of the Seminar on geometry and mathematical modeling, v. 2, Alt. un-ty Press, Barnaul, 2016, 55–61

[4] V.V. Konnov, “On differential-geometric characteristics of Veronese curves”, Math. Sb., 7:191 (2000), 73–88 | MR | Zbl

[5] I.V. Polikanova, “The definiteness of the enica by a finite set of points”, Collected articles of scientific conference “MAK: Mathematicians for Altay Region” (Barnaul, 2017), 37–40