On a family of minimal isotropic tori and Klein bottles in~$\mathbb{C}P^3$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 955-958.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct a family of minimal isotropic tori and Klein bottles in $\mathbb{C}P^3$ in terms elementary functions.
Keywords: minimal isotropic tori, Klein bottles, Laplace–Beltrami operator.
@article{SEMR_2019_16_a56,
     author = {M. S. Ermentai},
     title = {On a family of minimal isotropic tori and {Klein} bottles in~$\mathbb{C}P^3$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {955--958},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a56/}
}
TY  - JOUR
AU  - M. S. Ermentai
TI  - On a family of minimal isotropic tori and Klein bottles in~$\mathbb{C}P^3$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 955
EP  - 958
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a56/
LA  - ru
ID  - SEMR_2019_16_a56
ER  - 
%0 Journal Article
%A M. S. Ermentai
%T On a family of minimal isotropic tori and Klein bottles in~$\mathbb{C}P^3$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 955-958
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a56/
%G ru
%F SEMR_2019_16_a56
M. S. Ermentai. On a family of minimal isotropic tori and Klein bottles in~$\mathbb{C}P^3$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 955-958. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a56/

[1] R. A. Sharipov, “Minimal tori in the five-dimensional sphere in ${\mathbb C}^3$”, Theoretical and Mathematical Physics, 87:1 (1991), 363–369 | DOI | MR | Zbl

[2] A. E. Mironov, “Relationship between symmetries of the Tzitzeica equation and the Novikov–Veselov Hierarchy”, Math. Notes, 82:4 (2007), 569–572 | DOI | MR | Zbl

[3] H. Ma, Y. Ma, “Totally real minimal tori in $\mathbb{C}P^2$”, Math. Z., 249:2 (2005), 241–-267 | DOI | MR | Zbl

[4] H. Ma, A. E. Mironov, D. Zuo, “An energy functional for Lagrangian tori in $\mathbb{C}P^2$”, Annals of Global Analysis and Geometry, 53:4 (2018), 583–595 | DOI | MR | Zbl

[5] M. S. Yermentay, “On minimal isotropic tori in $\mathbb CP^3$”, Sib. Math. J., 59:3 (2018), 415–419 | DOI | MR | Zbl

[6] T. Otsuki, “Minimal Hypersurfaces in a Riemannian Manifold of Constant Curvature”, American Journal of Mathematics, 92:1 (1970), 145–-173 | DOI | MR | Zbl

[7] H. B. Lawson, “Complete Minimal Surfaces in $S^3$”, Annals of Mathematics, 92:3 (1970), 335–-374 | DOI | MR | Zbl

[8] A. E. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb{C}^n$ and $\mathbb{C}P^n$”, Sb. Math., 195:1 (2004), 85–96 | DOI | MR | Zbl

[9] A. V. Penskoi, “Extremal metrics for eigenvalues of the Laplace–Beltrami operator on surfaces”, Russian Math. Surveys, 68:6 (2013), 1073–1130 | DOI | MR | Zbl

[10] H. B. Lawson, Lectures on Minimal Submanifolds, v. 1, Mathematics Lecture Series, 9, Publish or Perish, Inc., Berkeley, California, 1980 | MR | Zbl