On generalized J\o{}rgensen inequality in $\mathrm{SL}(2, \mathbb{C})$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 542-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

Wang, Jiang and Cao have obtained a generalized version of the Jørgensen inequality in Proc. Indian Acad. Sci. Math. Sci., 123(2):245–251, 2013, for two generator subgroups of $\mathrm{SL}(2, \mathbb{C})$ where one of the generators is loxodromic. We prove that their inequality is strict.
Keywords: Jørgensen inequality, discreteness.
@article{SEMR_2019_16_a53,
     author = {K. Gongopadhyay and M. M. Mishra and D. Tiwari},
     title = {On generalized {J\o{}rgensen} inequality in $\mathrm{SL}(2, \mathbb{C})$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {542--546},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a53/}
}
TY  - JOUR
AU  - K. Gongopadhyay
AU  - M. M. Mishra
AU  - D. Tiwari
TI  - On generalized J\o{}rgensen inequality in $\mathrm{SL}(2, \mathbb{C})$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 542
EP  - 546
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a53/
LA  - en
ID  - SEMR_2019_16_a53
ER  - 
%0 Journal Article
%A K. Gongopadhyay
%A M. M. Mishra
%A D. Tiwari
%T On generalized J\o{}rgensen inequality in $\mathrm{SL}(2, \mathbb{C})$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 542-546
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a53/
%G en
%F SEMR_2019_16_a53
K. Gongopadhyay; M. M. Mishra; D. Tiwari. On generalized J\o{}rgensen inequality in $\mathrm{SL}(2, \mathbb{C})$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 542-546. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a53/

[1] Wensheng Cao, John R. Parker, “Jørgensen's inequality and collars in {$n$}-dimensional quaternionic hyperbolic space”, Q. J. Math., 62:3 (2011), 523–543 | DOI | MR | Zbl

[2] K. Gongopadhyay, “On generalized Jørgensen inequality in infinite dimension”, New York J. Math., 24 (2018), 865–869 | MR | Zbl

[3] K. Gongopadhyay, A. Mukherjee, “Extremality of quaternionic Jørgensen inequality”, Hiroshima Math. J., 47:2 (2017), 113–137 | DOI | MR | Zbl

[4] T. Jørgensen, “On discrete groups of Möbius transformations”, Amer. J. Math., 98:3 (1976), 739–749 | DOI | MR

[5] T. Jørgensen, M. Kiikka, “Some extreme discrete groups”, Ann. Acad. Sci. Fenn. Ser. AI Math., 1:2 (1975), 245–248 | DOI | MR | Zbl

[6] Math. Notes, 102:1–2 (2017), 219–231 | DOI | DOI | MR | Zbl

[7] D. Repovš, A. Vesnin, “On Gehring-Martin-Tan groups with an elliptic generator”, Bull. Aust. Math. Soc., 94:2 (2016), 326–336 | DOI | MR | Zbl

[8] Hua Wang, Yueping Jiang, Wensheng Cao, “Notes on discrete subgroups of {M}öbius transformations”, Indian Acad. Sci. Math. Sci., 123:2 (2013), 245–251 | DOI | MR | Zbl