Remarks on Ostrovsky's theorem
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 435-438

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that the condition 'one-to-one' of the continuous open-resolvable mapping is necessary in the Ostrovsky theorem (Theorem 1 in [4]). Also we get that the Ostrovsky problem ([6], Problem 2) (Is every continuous open-$LC_n$ function between Polish spaces piecewise open for $n=2,3,...$ ?) has a negative solution for each $n>1$.
Keywords: open-resolvable function, open function, resolvable set, open-$LC_n$ function, piecewise open function, scatteredly open function.
@article{SEMR_2019_16_a51,
     author = {Alexander V. Osipov},
     title = {Remarks on {Ostrovsky's} theorem},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {435--438},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a51/}
}
TY  - JOUR
AU  - Alexander V. Osipov
TI  - Remarks on Ostrovsky's theorem
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 435
EP  - 438
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a51/
LA  - en
ID  - SEMR_2019_16_a51
ER  - 
%0 Journal Article
%A Alexander V. Osipov
%T Remarks on Ostrovsky's theorem
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 435-438
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a51/
%G en
%F SEMR_2019_16_a51
Alexander V. Osipov. Remarks on Ostrovsky's theorem. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 435-438. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a51/