Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a5, author = {L. L. Maksimova and V. F. Yun}, title = {Recognizability in {pre-Heyting} and well-composed logics}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {427--434}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a5/} }
L. L. Maksimova; V. F. Yun. Recognizability in pre-Heyting and well-composed logics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 427-434. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a5/
[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer F3ormalismus”, Compositio Mathematica, 4 (1937), 119–136 | MR
[2] L.L. Maksimova, V.F. Yun, “Recognizable Logics”, Algebra and Logic, 54:2 (2015), 167–182 | DOI | MR | Zbl
[3] L.L. Maksimova, “Recognizable and Perceptible Logics and Varieties”, Algebra and Logic, 56:3 (2017), 245–250 | DOI | MR | Zbl
[4] L.L. Maksimova, V.F. Yun, “Strong Decidability and Strong Recognizability”, Algebra and Logic, 56:5 (2017), 370–385 | DOI | MR | Zbl
[5] M.V. Stukachyova, “The Disjunction Property in the Class of Paraconsistent Extensions of Minimal Logic”, Algebra and Logic, 43:2 (2004), 132–141 | DOI | MR
[6] S. Odintsov, Constructive negations and paraconsistency, Trends in Logic, 26, Springer, Dordrecht, 2008 | MR | Zbl
[7] L.L. Maksimova, V.F. Yun, “Calculi over minimal logic and nonembeddability of algebras”, SEMR, 13 (2016), 704–715 | MR | Zbl
[8] L. Maksimova, “Strongly Decidable Properties of Modal and Intuitionistic Calculi”, Logic Journal of IGPL, 8:6 (2000), 797–819 | DOI | MR | Zbl
[9] V.V. Rybakov, Admissibility of Logical Inference Rules, Elsevier, Amsterdam–New York, 1997 | MR | Zbl
[10] S.P. Odintsov, V.V. Rybakov, “Unification and admissible rules for paraconsistent minimal Johannson's logic J and positive intuitionistic logic $IPC^+$”, Ann. Pure Appl. Logic, 164 (2013), 771–784 | DOI | MR | Zbl
[11] L.L. Maksimova, “Implicit Definability and Positive Logics”, Algebra and Logic, 42:1 (2003), 37–53 | DOI | MR | Zbl