Recognizability in pre-Heyting and well-composed logics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 427-434.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the problems of recognizability and strong recognizavility, perceptibility and strong perceptibility in extensions of the minimal Johansson logic $\mathrm{J}$ [1] are studied. These concepts were introduced in [2, 3, 4]. Although the intuitionistic logic Int is recognizable over $\mathrm{J}$ [2], the problem of its strong recognizability over $\mathrm{J}$ is not solved. Here we prove that Int is strong recognizable and strong perceptible over the minimal pre-Heyting logic Od and the minimal well-composed logic $\mathrm{JX}$. In addition, we prove the perceptibility of the formula $F$ over $\mathrm{JX}$. It is unknown whether the logic $\mathrm{J+F}$ is recognizable over $\mathrm{J}$.
Keywords: Recognizability, strong recognizability, minimal logic, pre-Heyting logic, superintuitionistic logic
Mots-clés : Johansson algebra, Heyting algebra, calculus.
@article{SEMR_2019_16_a5,
     author = {L. L. Maksimova and V. F. Yun},
     title = {Recognizability in {pre-Heyting} and well-composed logics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {427--434},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a5/}
}
TY  - JOUR
AU  - L. L. Maksimova
AU  - V. F. Yun
TI  - Recognizability in pre-Heyting and well-composed logics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 427
EP  - 434
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a5/
LA  - ru
ID  - SEMR_2019_16_a5
ER  - 
%0 Journal Article
%A L. L. Maksimova
%A V. F. Yun
%T Recognizability in pre-Heyting and well-composed logics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 427-434
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a5/
%G ru
%F SEMR_2019_16_a5
L. L. Maksimova; V. F. Yun. Recognizability in pre-Heyting and well-composed logics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 427-434. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a5/

[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer F3ormalismus”, Compositio Mathematica, 4 (1937), 119–136 | MR

[2] L.L. Maksimova, V.F. Yun, “Recognizable Logics”, Algebra and Logic, 54:2 (2015), 167–182 | DOI | MR | Zbl

[3] L.L. Maksimova, “Recognizable and Perceptible Logics and Varieties”, Algebra and Logic, 56:3 (2017), 245–250 | DOI | MR | Zbl

[4] L.L. Maksimova, V.F. Yun, “Strong Decidability and Strong Recognizability”, Algebra and Logic, 56:5 (2017), 370–385 | DOI | MR | Zbl

[5] M.V. Stukachyova, “The Disjunction Property in the Class of Paraconsistent Extensions of Minimal Logic”, Algebra and Logic, 43:2 (2004), 132–141 | DOI | MR

[6] S. Odintsov, Constructive negations and paraconsistency, Trends in Logic, 26, Springer, Dordrecht, 2008 | MR | Zbl

[7] L.L. Maksimova, V.F. Yun, “Calculi over minimal logic and nonembeddability of algebras”, SEMR, 13 (2016), 704–715 | MR | Zbl

[8] L. Maksimova, “Strongly Decidable Properties of Modal and Intuitionistic Calculi”, Logic Journal of IGPL, 8:6 (2000), 797–819 | DOI | MR | Zbl

[9] V.V. Rybakov, Admissibility of Logical Inference Rules, Elsevier, Amsterdam–New York, 1997 | MR | Zbl

[10] S.P. Odintsov, V.V. Rybakov, “Unification and admissible rules for paraconsistent minimal Johannson's logic J and positive intuitionistic logic $IPC^+$”, Ann. Pure Appl. Logic, 164 (2013), 771–784 | DOI | MR | Zbl

[11] L.L. Maksimova, “Implicit Definability and Positive Logics”, Algebra and Logic, 42:1 (2003), 37–53 | DOI | MR | Zbl