Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a46, author = {P. I. Tesemnikov}, title = {On the distribution tail of the sum of the maxima of two randomly stopped sums in the presence of heavy tails}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1785--1794}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a46/} }
TY - JOUR AU - P. I. Tesemnikov TI - On the distribution tail of the sum of the maxima of two randomly stopped sums in the presence of heavy tails JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1785 EP - 1794 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a46/ LA - ru ID - SEMR_2019_16_a46 ER -
%0 Journal Article %A P. I. Tesemnikov %T On the distribution tail of the sum of the maxima of two randomly stopped sums in the presence of heavy tails %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1785-1794 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a46/ %G ru %F SEMR_2019_16_a46
P. I. Tesemnikov. On the distribution tail of the sum of the maxima of two randomly stopped sums in the presence of heavy tails. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1785-1794. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a46/
[1] S. Asmussen, “Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities”, The Annals of Applied Probability, 8:2 (1998), 354–374 | DOI | MR | Zbl
[2] S. Foss, D. Korshunov, S. Zachary, An introduction to heavy-tailed and subexponential distributions, 2nd edition, Springer, New York, 2013 | MR | Zbl
[3] S. Foss, Z. Palmowski, S. Zachary, “The probability of exceeding a high boundary on a random time interval for a heavy-tailed random walk”, The Annals of Applied Probability, 15:3 (2005), 1936–1957 | DOI | MR | Zbl
[4] S. Foss, S. Zachary, “The maximum on a random time interval of a random walk with long-tailed increments and negative drift”, The Annals of Applied Probability, 13:1 (2003), 37–53 | DOI | MR | Zbl
[5] C. Klüppelberg, “Subexponential distributions and integrated tails”, Journal of Applied Probability, 25:1 (1988), 132–141 | DOI | MR | Zbl