On Borovkov's estimate in the Invariance Principle
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1776-1784.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first general estimate in the functional CLT (i.e. in the Invariance Principle) was obtained by A. Borovkov in 1973 in terms of the Lyapunov fractions of order not greater than three. Here we present explicit numerical bounds for the constants in Borovkov's estimate. In addition, we have found similar but more precise estimates in terms of truncated Lyapunov fractions.
Keywords: estimates in the Invariance Principle, Prokhorov distance, Lyapunov fraction, truncated Lyapunov fraction.
@article{SEMR_2019_16_a45,
     author = {A. I. Sakhanenko},
     title = {On {Borovkov's} estimate in the {Invariance} {Principle}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1776--1784},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a45/}
}
TY  - JOUR
AU  - A. I. Sakhanenko
TI  - On Borovkov's estimate in the Invariance Principle
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1776
EP  - 1784
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a45/
LA  - en
ID  - SEMR_2019_16_a45
ER  - 
%0 Journal Article
%A A. I. Sakhanenko
%T On Borovkov's estimate in the Invariance Principle
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1776-1784
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a45/
%G en
%F SEMR_2019_16_a45
A. I. Sakhanenko. On Borovkov's estimate in the Invariance Principle. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1776-1784. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a45/

[1] A. A. Borovkov, “On the rate of convergence for the invariance principle”, Theory Probab. Appl., 18:2 (1974), 207–225 | DOI | MR

[2] M. D. Donsker, “An invariance principle for certain probability limit theorems”, Memoirs of the American Mathematical Society, 6, no. 6, 1951, 885–900 | MR

[3] Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory”, Theory Probab. Appl., 1:2 (1956), 157–214 | DOI | MR

[4] A. I. Sakhanenko, “Simple method of obtaining estimates in the invariance principle”, Probability Theory and Mathematical Statistics, Springer, Berlin–Heidelberg, 1988, 430–443 | DOI | MR

[5] Siberian Advances in Mathematics, 1:4 (1991), 58–91 | MR | MR

[6] A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle”, High dimensional probability II, Progr. Probab., 47, 2000, 223–245 | MR | Zbl

[7] A. I. Sakhanenko, “Estimates in the invariance principle in terms of truncated power moments”, Siberian Math. J., 47:6 (2006), 1113–1127 | DOI | MR | Zbl

[8] Skorokhod A. V., “On a certain representation of random variables”, Teor. Veroyatnost. i Primenen., 21:3 (1976), 645–648 | MR | Zbl