On a stochastic process with switchings
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1531-1546.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a stochastic process $X(t)$ with switchings between two stationary processes with independent increments while achieving regulatory barriers. We obtain the dual Laplace–Stieltjes transform of the distribution of the process $X(t)$ and its limit as $t\to\infty$. Under Cramer's type conditions, the asymptotic representations of these transforms are obtained when the width of the regulating strip is growing. We use known results for regenerative processes and factorization technique for the study in boundary crossing problems for stochastic processes.
Keywords: oscillating stochastic process, stationary process with independent increments, regenerative process, stationary distribution, factorization method.
@article{SEMR_2019_16_a44,
     author = {V. I. Lotov and V. R. Xodjibayev},
     title = {On a stochastic process with switchings},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1531--1546},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a44/}
}
TY  - JOUR
AU  - V. I. Lotov
AU  - V. R. Xodjibayev
TI  - On a stochastic process with switchings
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1531
EP  - 1546
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a44/
LA  - ru
ID  - SEMR_2019_16_a44
ER  - 
%0 Journal Article
%A V. I. Lotov
%A V. R. Xodjibayev
%T On a stochastic process with switchings
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1531-1546
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a44/
%G ru
%F SEMR_2019_16_a44
V. I. Lotov; V. R. Xodjibayev. On a stochastic process with switchings. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1531-1546. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a44/

[1] B.A. Rogozin, “On the distributions of some functional related to boundary problems for processes with independent increments”, Theory Probab. Appl., 11 (1966), 580–591 | MR | Zbl

[2] B.A. Rogozin, “On the local behavior of processes with independent increments”, Theory Probab. Appl., 13 (1968), 482–486 | MR | Zbl

[3] B.A. Rogozin, “Distribution of the maximum of a process with independent increments”, Siberian Math. Journal, 10 (1969), 989–1010 | MR

[4] V.I. Lotov, “On a random walk with switchings”, Siberian Electronic Mathematical Reports, 15 (2018), 1320–1331 | MR | Zbl

[5] A.A. Borovkov, Probability Theory, Springer-Verlag, London, 2013 | MR | Zbl

[6] V.I. Lotov, V.R. Khodjibayev, “On limit theorems for the first exit time from a strip for stochastic processes. II”, Siberian Adv. Math., 8:4 (1998), 41–59 | MR | Zbl