Lattices in generative classes
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1752-1761.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define and study lattices in generative classes associated with generic structures. It is shown that these lattices can be non-distributive and, moreover, arbitrary enough. Heights and wights of the lattices are described. A model-theoretic criterion for the linear ordering is proved and these linear orders are described. Boolean algebras generated by the considered lattices are also described.
Keywords: lattice, generative class, generic structure, linear order, Boolean algebra.
@article{SEMR_2019_16_a27,
     author = {Y. Kiouvrekis and P. Stefaneas and S. V. Sudoplatov},
     title = {Lattices in generative classes},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1752--1761},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a27/}
}
TY  - JOUR
AU  - Y. Kiouvrekis
AU  - P. Stefaneas
AU  - S. V. Sudoplatov
TI  - Lattices in generative classes
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1752
EP  - 1761
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a27/
LA  - en
ID  - SEMR_2019_16_a27
ER  - 
%0 Journal Article
%A Y. Kiouvrekis
%A P. Stefaneas
%A S. V. Sudoplatov
%T Lattices in generative classes
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1752-1761
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a27/
%G en
%F SEMR_2019_16_a27
Y. Kiouvrekis; P. Stefaneas; S. V. Sudoplatov. Lattices in generative classes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1752-1761. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a27/

[1] S. V. Sudoplatov, Classification of Countable Models of Complete Theories, NSTU, Novosibirsk, 2018

[2] S. V. Sudoplatov, “Syntactic approach to constructions of generic models”, Algebra and Logic, 46 (2007), 134–146 | DOI | MR | Zbl

[3] S. V. Sudoplatov, The Lachlan problem, NSTU, Novosibirsk, 2009

[4] S. V. Sudoplatov, “Generative and pre-generative classes”, Proceedings of the $10^{\rm th}$ Panhellenic Logic Symposium (June 11–15, 2015, Samos, Greece), University of Aegean, University of Crete, University of Athens, 30–34

[5] S. V. Sudoplatov, “Generative classes generated by sets of diagrams”, Algebra and Model Theory 10, Collection of papers, eds. A.G. Pinus, K.N. Ponomaryov, S.V. Sudoplatov, E.I. Timoshenko, NSTU, Novosibirsk, 2015, 163–174

[6] S. V. Sudoplatov, Y. Kiouvrekis, P. Stefaneas, “Generic constructions and generic limits”, Algebraic Modeling of Topological and Computational Structures and Applications, Springer Proc. in Math. Statist., 219, eds. S. Lambropoulou et al., Springer Int. Publ., Berlin, 2017, 375–398 | DOI | MR | Zbl

[7] Y. Kiouvrekis, P. Stefaneas, S. V. Sudoplatov, “Definable sets in generic structures and their cardinalities”, Siberian Advances in Mathermatics, 28:1 (2018), 39–52 | DOI | MR

[8] G. Birkhoff, Lattice Theory, American Mathematical Soc., 1964 | MR

[9] G. Grätzer, General Lattice Theory, Birkhauser, Basel, 2003 | MR | Zbl

[10] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 2011 | MR