Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a27, author = {Y. Kiouvrekis and P. Stefaneas and S. V. Sudoplatov}, title = {Lattices in generative classes}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1752--1761}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a27/} }
Y. Kiouvrekis; P. Stefaneas; S. V. Sudoplatov. Lattices in generative classes. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1752-1761. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a27/
[1] S. V. Sudoplatov, Classification of Countable Models of Complete Theories, NSTU, Novosibirsk, 2018
[2] S. V. Sudoplatov, “Syntactic approach to constructions of generic models”, Algebra and Logic, 46 (2007), 134–146 | DOI | MR | Zbl
[3] S. V. Sudoplatov, The Lachlan problem, NSTU, Novosibirsk, 2009
[4] S. V. Sudoplatov, “Generative and pre-generative classes”, Proceedings of the $10^{\rm th}$ Panhellenic Logic Symposium (June 11–15, 2015, Samos, Greece), University of Aegean, University of Crete, University of Athens, 30–34
[5] S. V. Sudoplatov, “Generative classes generated by sets of diagrams”, Algebra and Model Theory 10, Collection of papers, eds. A.G. Pinus, K.N. Ponomaryov, S.V. Sudoplatov, E.I. Timoshenko, NSTU, Novosibirsk, 2015, 163–174
[6] S. V. Sudoplatov, Y. Kiouvrekis, P. Stefaneas, “Generic constructions and generic limits”, Algebraic Modeling of Topological and Computational Structures and Applications, Springer Proc. in Math. Statist., 219, eds. S. Lambropoulou et al., Springer Int. Publ., Berlin, 2017, 375–398 | DOI | MR | Zbl
[7] Y. Kiouvrekis, P. Stefaneas, S. V. Sudoplatov, “Definable sets in generic structures and their cardinalities”, Siberian Advances in Mathermatics, 28:1 (2018), 39–52 | DOI | MR
[8] G. Birkhoff, Lattice Theory, American Mathematical Soc., 1964 | MR
[9] G. Grätzer, General Lattice Theory, Birkhauser, Basel, 2003 | MR | Zbl
[10] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 2011 | MR