Isomorphisms of lattices of subalgebras of the semifield of continuous positive functions with max-addition
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1493-1530.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{P}^{\vee}$ be the semifield of positive real numbers with operations of max-addition and multiplication and $U^{\vee}(X)$ be the semifield of continuous $\mathbb{P}^{\vee}$-valued functions on an arbitrary topological space $X$ with pointwise operation max-addition and multiplication. We call a subset $A\subseteq U^{\vee}(X)$ a subalgebra if $f\vee g,$ $fg,$ $rf\in A$ for any $f, g\in A,$ $r\in\mathbb{P}^{\vee}.$ We describe isomorphisms of lattices of subalgebras of semifields $U^{\vee}(X).$
Keywords: semifield of continuous functions, lattice of subalgebras, Hewitt space, max-addition.
Mots-clés : subalgebra, isomorphism
@article{SEMR_2019_16_a24,
     author = {V. V. Sidorov},
     title = {Isomorphisms of lattices of subalgebras of the semifield of continuous positive functions with max-addition},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1493--1530},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a24/}
}
TY  - JOUR
AU  - V. V. Sidorov
TI  - Isomorphisms of lattices of subalgebras of the semifield of continuous positive functions with max-addition
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1493
EP  - 1530
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a24/
LA  - ru
ID  - SEMR_2019_16_a24
ER  - 
%0 Journal Article
%A V. V. Sidorov
%T Isomorphisms of lattices of subalgebras of the semifield of continuous positive functions with max-addition
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1493-1530
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a24/
%G ru
%F SEMR_2019_16_a24
V. V. Sidorov. Isomorphisms of lattices of subalgebras of the semifield of continuous positive functions with max-addition. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1493-1530. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a24/

[1] V. V. Sidorov, “Determinability of Hewitt spaces by the lattices of subalgebras with unit of semifields of continuous positive functions with max-plus”, Lobachevskii J. Math., 38 (2017), 741–750 | MR | Zbl

[2] L. Gillman, M. Jerison, Rings of continuous functions, Springer-Verlag, New York, 1976 | MR | Zbl

[3] I. M. Gelfand, A. N. Kolmogorov, “On rings of continuous functions on topological spaces”, Dokl. Akad. Nauk SSSR, 22:1 (1939), 11–15

[4] E. Hewitt, “Rings of real-valued continuous functions. I”, Trans. Amer. Math. Soc., 64:1 (1948), 45–99 | MR | Zbl

[5] E. M. Vechtomov, “The lattice of subalgebras of the ring of continuous functions and Hewitt spaces”, Mat. Zametki, 62:5 (1997), 687–693 | MR | Zbl

[6] E. M. Vechtomov, V. V. Sidorov, “Determinability of Hewitt spaces by the l attices of subalgebras of semifields of continuous positive functions with max-plus”, Tr. Inst. Mat. i Mech. UrO RAN, 21, no. 3, 2015, 78–88 | MR

[7] R. Engelking, General topology, Mir, M., 1986 | MR