Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a21, author = {A. N. Rybalov}, title = {Generic undecidability of universal theories}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1289--1294}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a21/} }
A. N. Rybalov. Generic undecidability of universal theories. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1289-1294. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a21/
[1] E.Y. Daniyarova, A.G. Myasnikov, V.N. Remeslennikov, Algebraic geometry over algebraic structures, SB RAS, Novosibirsk, 2016 (in Russian) | MR
[2] J.D. Hamkins, A. Miasnikov, “The halting problem is decidable on a set of asymptotic probability one”, Notre Dame Journal of Formal Logic, 47:4 (2006), 515–524 | DOI | MR | Zbl
[3] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity, decision problems in group theory and random walks”, Journal of Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[4] I. Kapovich, A. Myasnikov, P. Schupp, V. Shpilrain, “Average-case complexity for the word and membership problems in group theory”, Advances in Mathematics, 190 (2005), 343–359 | DOI | MR | Zbl
[5] A. Myasnikov, A. Rybalov, “Generic complexity of undecidable problems”, Journal of Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR | Zbl
[6] D.E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, Massachusetts, 1997 | MR | Zbl