On the degree of minimal identity of a finitely generated algebra with a fixed nilpotence index
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1028-1035.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find the degree of the minimal identity of a finitely generated nilpotent algebra with fixed number of generators and nilpotence index.
Keywords: generators, identity, nilpotent algebra.
@article{SEMR_2019_16_a16,
     author = {E. P. Petrov},
     title = {On the degree of minimal identity of a finitely generated algebra with a fixed nilpotence index},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1028--1035},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a16/}
}
TY  - JOUR
AU  - E. P. Petrov
TI  - On the degree of minimal identity of a finitely generated algebra with a fixed nilpotence index
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1028
EP  - 1035
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a16/
LA  - ru
ID  - SEMR_2019_16_a16
ER  - 
%0 Journal Article
%A E. P. Petrov
%T On the degree of minimal identity of a finitely generated algebra with a fixed nilpotence index
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1028-1035
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a16/
%G ru
%F SEMR_2019_16_a16
E. P. Petrov. On the degree of minimal identity of a finitely generated algebra with a fixed nilpotence index. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1028-1035. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a16/

[1] V.A. Andrunakievich (ed.), The Dniester Notebook (Unsolved problems in the theory of rings and modules), Third edition, Akad. Nauk SSSR, Sib. Otd., Inst. Mat., Novosibirsk, 1982 | MR | Zbl

[2] S.A. Pikhtil'kov, On varieties generated by n-dimensional algebras, Manuscript deposited at VINITI, 1213-80 Dep., Tula Polytechnic Inst., Tula, 1980

[3] Yu.N. Mal'tsev, “On identities of nilpotent algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 1986, no. 9, 68–72 | Zbl

[4] I.L. Guseva, “On identities of finite-dimensional nilpotent algebras”, Internat. Conf. on Algebra, dedicated in the memory A. I. Mal'tsev (August, 1989, Novosibirsk), 43 | Zbl

[5] E.P. Petrov, “On identities of finite-dimensional nilpotent algebras”, Algebra i Logika, 30:5 (1991), 540–556 | DOI | MR | Zbl

[6] E.P. Petrov, “Defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{2}/R^{3} = 2$”, Siberian Electronic Mathematical Reports, 13 (2016), 1052–1066 | MR | Zbl

[7] E.P. Petrov, “Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 14 (2017), 1153–1187 | MR | Zbl

[8] E.P. Petrov, “Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 15 (2018), 1048–1064 | MR | Zbl