Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a16, author = {E. P. Petrov}, title = {On the degree of minimal identity of a finitely generated algebra with a fixed nilpotence index}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1028--1035}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a16/} }
TY - JOUR AU - E. P. Petrov TI - On the degree of minimal identity of a finitely generated algebra with a fixed nilpotence index JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1028 EP - 1035 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a16/ LA - ru ID - SEMR_2019_16_a16 ER -
E. P. Petrov. On the degree of minimal identity of a finitely generated algebra with a fixed nilpotence index. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1028-1035. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a16/
[1] V.A. Andrunakievich (ed.), The Dniester Notebook (Unsolved problems in the theory of rings and modules), Third edition, Akad. Nauk SSSR, Sib. Otd., Inst. Mat., Novosibirsk, 1982 | MR | Zbl
[2] S.A. Pikhtil'kov, On varieties generated by n-dimensional algebras, Manuscript deposited at VINITI, 1213-80 Dep., Tula Polytechnic Inst., Tula, 1980
[3] Yu.N. Mal'tsev, “On identities of nilpotent algebras”, Izv. Vyssh. Uchebn. Zaved., Mat., 1986, no. 9, 68–72 | Zbl
[4] I.L. Guseva, “On identities of finite-dimensional nilpotent algebras”, Internat. Conf. on Algebra, dedicated in the memory A. I. Mal'tsev (August, 1989, Novosibirsk), 43 | Zbl
[5] E.P. Petrov, “On identities of finite-dimensional nilpotent algebras”, Algebra i Logika, 30:5 (1991), 540–556 | DOI | MR | Zbl
[6] E.P. Petrov, “Defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{2}/R^{3} = 2$”, Siberian Electronic Mathematical Reports, 13 (2016), 1052–1066 | MR | Zbl
[7] E.P. Petrov, “Structure, defining relations and identities of finite-dimensional nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 14 (2017), 1153–1187 | MR | Zbl
[8] E.P. Petrov, “Defining relations and identities of finite-generated nilpotent algebra $R$ with condition $dim R^{N}/R^{N+1} = 2$”, Siberian Electronic Mathematical Reports, 15 (2018), 1048–1064 | MR | Zbl