Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a15, author = {S. V. Gusev}, title = {On the ascending and descending chain conditions in the lattice of monoid varieties}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {983--997}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a15/} }
TY - JOUR AU - S. V. Gusev TI - On the ascending and descending chain conditions in the lattice of monoid varieties JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 983 EP - 997 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a15/ LA - en ID - SEMR_2019_16_a15 ER -
S. V. Gusev. On the ascending and descending chain conditions in the lattice of monoid varieties. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 983-997. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a15/
[1] T. Evans, “The lattice of semigroup varieties”, Semigroup Forum, 2 (1971), 1–43 | DOI | MR | Zbl
[2] S.V. Gusev, “On the lattice of overcommutative varieties of monoids”, Russian Math. Iz. VUZ, 62:5 (2018), 23–26 | DOI | MR | Zbl
[3] S.V. Gusev, “Special elements of the lattice of monoid varieties”, Algebra Univ., 97:2 (2018), 29, 12 pp. | DOI | MR | Zbl
[4] S.V. Gusev, B.M. Vernikov, “Chain varieties of monoids”, Dissert. Math., 534, 2018, 73 pp. | DOI | MR | Zbl
[5] T.J. Head, “The varieties of commutative monoids”, Nieuw Arch. Wiskunde. III Ser., 16 (1968), 203–206 | MR | Zbl
[6] M. Jackson, “Finiteness properties of varieties and the restriction to finite algebras”, Semigroup Forum, 70:2 (2005), 154–187 ; “Erratum to: Finiteness properties of varieties and the restriction to finite algebras”, Semigroup Forum, 96:1 (2018), 197–198 | DOI | MR | DOI | MR | Zbl
[7] M. Jackson, E.W.H. Lee, “Monoid varieties with extreme properties”, Trans. Amer. Math. Soc., 370:7 (2018), 4785–4812 | DOI | MR | Zbl
[8] M. Jackson, O. Sapir, “Finitely based, finite sets of words”, Int. J. Algebra and Comput., 10 (2000), 683–708 | MR | Zbl
[9] P.A. Kozhevnikov, “On nonfinitely based varieties of groups of large prime exponent”, Commun. in Algebra, 40 (2012), 2628–2644 | DOI | MR | Zbl
[10] E.W.H. Lee, “On the variety generated by some monoid of order five”, Acta Scientiarum Mathematicarum, 74:3–4 (2008), 509–537 | MR | Zbl
[11] E.W.H. Lee, “Varieties generated by $2$-testable monoids”, Studia Sci. Math. Hungar., 49 (2012), 366–389 | MR | Zbl
[12] E.W.H. Lee, “Inherently non-finitely generated varieties of aperiodic monoids with central idempotents”, Zapiski Nauchnykh Seminarov POMI (Notes of Scientific Seminars of the St. Petersburg Branch of the Math. Institute of the Russ. Acad. of Sci.), 423, 2014, 166–182 | MR
[13] I.V. L'vov, “Varieties of associative rings. I”, Algebra and Logic, 12 (1973), 150–167 | DOI | MR | Zbl
[14] P. Perkins, “Bases for equational theories of semigroups”, J. Algebra, 11 (1969), 298–314 | DOI | MR | Zbl
[15] Gy. Pollák, “Some lattices of varieties containing elements without cover”, Quad. Ric. Sci., 109 (1981), 91–96 | MR | Zbl
[16] M. Sapir, “On cross semigroup varieties and related questions”, Semigroup Forum, 42:3 (1991), 345–364 | DOI | MR | Zbl
[17] O. Sapir, “Non-finitely based monoids”, Semigroup Forum, 90:3 (2015), 557–586 | DOI | MR | Zbl
[18] L.N. Shevrin, B.M. Vernikov, M.V. Volkov, “Lattices of semigroup varieties”, Russian Math. Iz. VUZ, 53:3 (2009), 1–28 | DOI | MR | Zbl
[19] S.L. Wismath, “The lattice of varieties and pseudovarieties of band monoids”, Semigroup Forum, 33 (1986), 187–198 | DOI | MR | Zbl