On the ascending and descending chain conditions in the lattice of monoid varieties
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 983-997.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we consider monoids as algebras with an associative binary operation and the nullary operation that fixes the identity element. We found an example of two varieties of monoids with finite subvariety lattices such that their join covers one of them and has a continuum cardinality subvariety lattice that violates the ascending chain condition and the descending chain condition.
Keywords: monoid, variety, lattice of varieties, ascending chain condition, descending chain condition.
@article{SEMR_2019_16_a15,
     author = {S. V. Gusev},
     title = {On the ascending and descending chain conditions in the lattice of monoid varieties},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {983--997},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a15/}
}
TY  - JOUR
AU  - S. V. Gusev
TI  - On the ascending and descending chain conditions in the lattice of monoid varieties
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 983
EP  - 997
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a15/
LA  - en
ID  - SEMR_2019_16_a15
ER  - 
%0 Journal Article
%A S. V. Gusev
%T On the ascending and descending chain conditions in the lattice of monoid varieties
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 983-997
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a15/
%G en
%F SEMR_2019_16_a15
S. V. Gusev. On the ascending and descending chain conditions in the lattice of monoid varieties. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 983-997. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a15/

[1] T. Evans, “The lattice of semigroup varieties”, Semigroup Forum, 2 (1971), 1–43 | DOI | MR | Zbl

[2] S.V. Gusev, “On the lattice of overcommutative varieties of monoids”, Russian Math. Iz. VUZ, 62:5 (2018), 23–26 | DOI | MR | Zbl

[3] S.V. Gusev, “Special elements of the lattice of monoid varieties”, Algebra Univ., 97:2 (2018), 29, 12 pp. | DOI | MR | Zbl

[4] S.V. Gusev, B.M. Vernikov, “Chain varieties of monoids”, Dissert. Math., 534, 2018, 73 pp. | DOI | MR | Zbl

[5] T.J. Head, “The varieties of commutative monoids”, Nieuw Arch. Wiskunde. III Ser., 16 (1968), 203–206 | MR | Zbl

[6] M. Jackson, “Finiteness properties of varieties and the restriction to finite algebras”, Semigroup Forum, 70:2 (2005), 154–187 ; “Erratum to: Finiteness properties of varieties and the restriction to finite algebras”, Semigroup Forum, 96:1 (2018), 197–198 | DOI | MR | DOI | MR | Zbl

[7] M. Jackson, E.W.H. Lee, “Monoid varieties with extreme properties”, Trans. Amer. Math. Soc., 370:7 (2018), 4785–4812 | DOI | MR | Zbl

[8] M. Jackson, O. Sapir, “Finitely based, finite sets of words”, Int. J. Algebra and Comput., 10 (2000), 683–708 | MR | Zbl

[9] P.A. Kozhevnikov, “On nonfinitely based varieties of groups of large prime exponent”, Commun. in Algebra, 40 (2012), 2628–2644 | DOI | MR | Zbl

[10] E.W.H. Lee, “On the variety generated by some monoid of order five”, Acta Scientiarum Mathematicarum, 74:3–4 (2008), 509–537 | MR | Zbl

[11] E.W.H. Lee, “Varieties generated by $2$-testable monoids”, Studia Sci. Math. Hungar., 49 (2012), 366–389 | MR | Zbl

[12] E.W.H. Lee, “Inherently non-finitely generated varieties of aperiodic monoids with central idempotents”, Zapiski Nauchnykh Seminarov POMI (Notes of Scientific Seminars of the St. Petersburg Branch of the Math. Institute of the Russ. Acad. of Sci.), 423, 2014, 166–182 | MR

[13] I.V. L'vov, “Varieties of associative rings. I”, Algebra and Logic, 12 (1973), 150–167 | DOI | MR | Zbl

[14] P. Perkins, “Bases for equational theories of semigroups”, J. Algebra, 11 (1969), 298–314 | DOI | MR | Zbl

[15] Gy. Pollák, “Some lattices of varieties containing elements without cover”, Quad. Ric. Sci., 109 (1981), 91–96 | MR | Zbl

[16] M. Sapir, “On cross semigroup varieties and related questions”, Semigroup Forum, 42:3 (1991), 345–364 | DOI | MR | Zbl

[17] O. Sapir, “Non-finitely based monoids”, Semigroup Forum, 90:3 (2015), 557–586 | DOI | MR | Zbl

[18] L.N. Shevrin, B.M. Vernikov, M.V. Volkov, “Lattices of semigroup varieties”, Russian Math. Iz. VUZ, 53:3 (2009), 1–28 | DOI | MR | Zbl

[19] S.L. Wismath, “The lattice of varieties and pseudovarieties of band monoids”, Semigroup Forum, 33 (1986), 187–198 | DOI | MR | Zbl