Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1171-1195

Voir la notice de l'article provenant de la source Math-Net.Ru

Since 1976 it is known that the oscillation of the real part of a conformal mapping of strip domains asymptotically vanishes if and only if the respective extremal length is approximately additive. We show that these properties are equivalent to an explicit geometric condition of Ostrowski type introduced by Rodin and Warschawski in 1980. We also consider other equivalent conditions and deduce several known criteria from the main result.
Keywords: asymptotics, conformal mapping, isogonality condition of Ostrowski, $L$-strip, vanishing oscillation.
Mots-clés : strip domain
@article{SEMR_2019_16_a140,
     author = {A. I. Parfenov},
     title = {Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1171--1195},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a140/}
}
TY  - JOUR
AU  - A. I. Parfenov
TI  - Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1171
EP  - 1195
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a140/
LA  - ru
ID  - SEMR_2019_16_a140
ER  - 
%0 Journal Article
%A A. I. Parfenov
%T Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1171-1195
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a140/
%G ru
%F SEMR_2019_16_a140
A. I. Parfenov. Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1171-1195. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a140/