Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a140, author = {A. I. Parfenov}, title = {Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1171--1195}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a140/} }
TY - JOUR AU - A. I. Parfenov TI - Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1171 EP - 1195 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a140/ LA - ru ID - SEMR_2019_16_a140 ER -
%0 Journal Article %A A. I. Parfenov %T Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1171-1195 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a140/ %G ru %F SEMR_2019_16_a140
A. I. Parfenov. Criterion for the vanishing of the oscillation of the real part of a conformal mapping of strips. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1171-1195. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a140/
[1] J.B. Garnett, D.E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[2] C. Gattegno, A. Ostrowski, “Représentation conforme à la frontière; domaines particuliers”, Mémorial Sci. Math., 110, Gauthier-Villars, Paris, 1949, 1–56 | MR | Zbl
[4] P. Henrici, Applied and Computational Complex Analysis, v. III, John Wiley Sons, New York, 1986 | MR | Zbl
[5] J.A. Jenkins, K. Oikawa, “Conformality and semi-conformality at the boundary”, J. Reine Angew. Math., 291 (1977), 92–117 | MR | Zbl
[6] R. Kühnau, “Bibliography of Geometric Function Theory”, Handbook of Complex Analysis: Geometric Function Theory, v. 2, ed. R. Kühnau, Elsevier, Amsterdam, 2005, 809–828 | DOI | MR | Zbl
[7] M. Lavrentiev, “On the continuity of univalent functions in closed domains”, C. R. (Doklady) Acad. Sci. U.S.S.R. New Ser., 4:5 (1936), 207–209 (Russian) | Zbl
[8] J. Lelong-Ferrand, Représentation conforme et transformations à intégrale de Dirichlet bornée, Gauthier-Villars, Paris, 1955 | MR | Zbl
[9] E. Lindelöf, “Sur la représentation conforme d'une aire simplement connexe sur l'aire d'un cercle”, Quatrième Congrès des Math. Scand. (1916), 1916, 59–90 | Zbl
[10] 1936 | Zbl
[11] A. Ostrowski, “Über den Habitus der konformen Abbildung am Rande des Abbildungsbereiches”, Acta Math., 64 (1935), 81–184 | DOI | MR | Zbl
[12] A. Ostrowski, “Zur Randverzerrung bei konformer Abbildung”, Prace Mat.-Fiz., 44 (1936), 371–471 | Zbl
[13] A. Ostrowski, Collected Mathematical Papers, v. 6, XIV: Conformal Mapping. XV: Numerical Analysis. XVI: Miscellany, Birkhäuser Verlag, Basel, 1985 | MR | Zbl
[14] A.I. Parfenov, “Error bound for a generalized M. A. Lavrentiev's formula via the norm of a fractional Sobolev space”, Siberian Electronic Mathematical Reports, 10 (2013), 335–377 (Russian) | MR | Zbl
[15] A.I. Parfenov, “Series in a Lipschitz perturbation of the boundary for solving the Dirichlet problem”, Siberian Advances in Mathematics, 27:4 (2017), 274–304 | DOI | MR | Zbl
[16] A.I. Parfenov, “Discrete Hölder estimates for a certain kind of parametrix. II”, Ufa Math. J., 9:2 (2017), 62–91 | DOI | MR
[17] A.I. Parfenov, “Approximate calculation of the defect of a Lipschitz cylindrical condenser”, Siberian Electronic Mathematical Reports, 15 (2018), 906–926 (Russian) | MR | Zbl
[18] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992 | MR | Zbl
[19] B. Rodin, S.E. Warschawski, “On conformal mapping of $L$-strips”, J. London Math. Soc. II. Ser., 11 (1975), 301–307 | DOI | MR | Zbl
[20] B. Rodin, S.E. Warschawski, “Extremal length and the boundary behavior of conformal mappings”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 2 (1976), 467–500 | DOI | MR | Zbl
[21] B. Rodin, S.E. Warschawski, “Estimates for conformal maps of strip domains without boundary regularity”, Proc. London Math. Soc. III. Ser., 39 (1979), 356–384 | DOI | MR | Zbl
[22] B. Rodin, S.E. Warschawski, “On the derivative of the Riemann mapping function near a boundary point and the Visser-Ostrowski problem”, Math. Ann., 248:2 (1980), 125–137 | DOI | MR | Zbl
[23] J.L. Schiff, Normal Families, Springer-Verlag, New York, 1993 | MR | Zbl
[24] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Springer, Berlin, 1971 | MR | Zbl
[25] S.E. Warschawski, “On conformal mapping of infinite strips”, Trans. Amer. Math. Soc., 51 (1942), 280–335 | DOI | MR | Zbl
[26] S.E. Warschawski, “On the boundary behavior of conformal maps”, Nagoya Math. J., 30 (1967), 83–101 | DOI | MR | Zbl