On the new representation of the virtual braid group
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 863-875.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a representation of the virtual braid group $V B_n$ into the automorphism group of a free product of a free groups and a free Abelian groups. V. G. Bardakov, Yu. A. Mikhalchishina and M. V. Neshchadim proposed a representation $\varphi_{M}$ of the virtual braid group $V B_n$ into the automorphism group of a free product of a free group and a free Abelian group. Our representation generalizes this representation $\varphi_{M}$. It is proved that the kernel of new representation is contained in the kernel of representation $\varphi_{M}$. It is proved that natural genetic code of image of the virtual braid group $V B_n$ with respect to new representation has strong symmetry.
Keywords: braids, virtual braids, representations by automorphisms.
@article{SEMR_2019_16_a14,
     author = {A. A. Korobov and O. A. Korobov},
     title = {On the new representation of the virtual braid group},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {863--875},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a14/}
}
TY  - JOUR
AU  - A. A. Korobov
AU  - O. A. Korobov
TI  - On the new representation of the virtual braid group
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 863
EP  - 875
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a14/
LA  - ru
ID  - SEMR_2019_16_a14
ER  - 
%0 Journal Article
%A A. A. Korobov
%A O. A. Korobov
%T On the new representation of the virtual braid group
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 863-875
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a14/
%G ru
%F SEMR_2019_16_a14
A. A. Korobov; O. A. Korobov. On the new representation of the virtual braid group. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 863-875. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a14/

[1] L. H. Kauffman, “Virtual knot theory”, Eur. J. Comb., 20:7 (1999), 663–690 | DOI | MR | Zbl

[2] S. Kamada, “Invariants of virtual braids and a remark on left stabilisations and virtual exchange moves”, Kobe J. Math., 21:1–2 (2004), 33–49 | MR | Zbl

[3] V. O. Manturov, Knot theory, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl

[4] V. G. Bardakov, “The virtual and universal braids”, Fund. Math., 181 (2004), 1–18 | DOI | MR | Zbl

[5] D. Silver, S. G. Williams, “Alexander groups and virtual links”, J. Knot Theory Ramifications, 10:1 (2001), 151–160 | DOI | MR | Zbl

[6] D. Silver, S. G. Williams, “Alexander groups of long virtual knots”, J. Knot Theory Ramifications, 15:1 (2006), 43–52 | DOI | MR | Zbl

[7] H.U. Boden, E. Dies, A.I. Gaudreau, A. Gerlings, E. Harper, A.J. Nicas, “Alexander invariants for virtual knots”, J. Knot Theory Ramifications, 24:3 (2015), 1550009 | DOI | MR | Zbl

[8] A. Markoff, “Foundations of the algebraic theory of tresses”, Travaux Inst. Math. Stekloff Acad. Sci. USSR, 16, 1945, 3–53 | MR | Zbl

[9] J. S. Birman, Braids, links, and mapping class groups, Princeton Univ. Press, NJ, Princeton, 1974 | MR

[10] V. V. Vershinin, “On homology of virtual braids and Burau representation”, J. Knot Theory Ramifications, 10:5 (2001), 795–812 | DOI | MR | Zbl

[11] V. G. Bardakov, P. Bellingeri, “Groups of virtual and welded links”, J. Knot Theory Ramifications, 23:3 (2014), 1450014 | DOI | MR | Zbl

[12] V. G. Bardakov, Yu. A. Mikhalchishina, M. V. Neshchadim, “Representations of virtual braids by automorphisms and virtual knot groups”, J. Knot Theory Ramifications, 26 (2017), 1750003 | DOI | MR | Zbl

[13] D. D. Long, M. Paton, “The Burau representation is not faithful for $n \geq 6$”, Topology, 32:2 (1993), 439–447 | DOI | MR | Zbl

[14] V. G. Bardakov, “Virtual and welded links and their invariants”, Siberian Electronic Mathematical Reports, 2 (2005), 196–199 | MR | Zbl

[15] H. Neiman, Varietes of Groups, Springer-Verlag, Berlin–Heidelberg–New-York, 1967 | MR

[16] M. I. Kargapolov, Yu. I. Merzlyakov, Foundations of the Group Theory, Nauka, M., 1977 | MR | Zbl