Some Calculations of~Orlicz Cohomology and Poincar\'e--Sobolev--Orlicz Inequalities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1079-1090.

Voir la notice de l'article provenant de la source Math-Net.Ru

We carry out calculations of Orlicz cohomology for some basic Riemannian manifolds (the real line, the hyperbolic plane, the ball). Relationship between Orlicz cohomology and Poincaré–Sobolev–Orlicz-type inequalities is discussed.
Keywords: differential form, Orlicz cohomology, Poincaré–Sobolev–Orlicz inequality.
Mots-clés : torsion
@article{SEMR_2019_16_a138,
     author = {V. Gol'dshtein and Ya. A. Kopylov},
     title = {Some {Calculations} {of~Orlicz} {Cohomology} and {Poincar\'e--Sobolev--Orlicz} {Inequalities}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1079--1090},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a138/}
}
TY  - JOUR
AU  - V. Gol'dshtein
AU  - Ya. A. Kopylov
TI  - Some Calculations of~Orlicz Cohomology and Poincar\'e--Sobolev--Orlicz Inequalities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1079
EP  - 1090
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a138/
LA  - en
ID  - SEMR_2019_16_a138
ER  - 
%0 Journal Article
%A V. Gol'dshtein
%A Ya. A. Kopylov
%T Some Calculations of~Orlicz Cohomology and Poincar\'e--Sobolev--Orlicz Inequalities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1079-1090
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a138/
%G en
%F SEMR_2019_16_a138
V. Gol'dshtein; Ya. A. Kopylov. Some Calculations of~Orlicz Cohomology and Poincar\'e--Sobolev--Orlicz Inequalities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1079-1090. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a138/

[1] R. P. Agarwal, S. Ding, C. A. Nolder, Inequalities for Differential Forms, Springer, Berlin, 2009 | MR | Zbl

[2] P. G. Dolya, Mathematical Methods of Computer Tomography. Supplement I. Introduction to the Theory of Distributions, Kharkiv National University, Kharkiv, 2012 http://geometry.karazin.ua/resources/documents/20140424194043_9a57d424.pdf

[3] V. M. Gol$'$dshtein, V. I. Kuz$'$minov, I. A. Shvedov, “Differential forms on Lipschitz manifolds”, Siberian Math. J., 23:2 (1982), 151–161 | DOI | MR | Zbl

[4] V. Gol'dshtein, M. Troyanov, “Sobolev inequalities for differential forms and $L_{q,p}$-cohomology”, J. Geom. Anal., 16:4 (2006), 597–632 | DOI | MR | Zbl

[5] T. Iwaniec, A. Lutoborski, “Integral estimates for null Lagrangians”, Arch. Rational Mech. Anal., 125:1 (1993), 25–79 | DOI | MR | Zbl

[6] T. Iwaniec, G. Martin, Geometric Function Theory and Nonlinear Analysis, Oxford University Press, Oxford, 2001 | MR | Zbl

[7] Ya. A. Kopylov, R. A. Panenko, “De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds”, Sib. Élektron. Mat. Izv., 12 (2015), 361–371 | MR | Zbl

[8] Ya. A. Kopylov, “Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology”, Probl. Anal. Issues Anal., 6(24):2 (2017), 57–80 | DOI | MR | Zbl

[9] M. A. Krasnosel'skiĭ, Ya. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd, Groningen, 1961 | MR | Zbl

[10] M. M. Rao, Z. D. Ren, Theory of Orlicz Spaces, Pure and Applied Mathematics, 146, Marcel Dekker, New York etc., 1991 | MR | Zbl