Some Calculations of Orlicz Cohomology and Poincaré–Sobolev–Orlicz Inequalities
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1079-1090 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We carry out calculations of Orlicz cohomology for some basic Riemannian manifolds (the real line, the hyperbolic plane, the ball). Relationship between Orlicz cohomology and Poincaré–Sobolev–Orlicz-type inequalities is discussed.
Keywords: differential form, Orlicz cohomology, Poincaré–Sobolev–Orlicz inequality.
Mots-clés : torsion
@article{SEMR_2019_16_a138,
     author = {V. Gol'dshtein and Ya. A. Kopylov},
     title = {Some {Calculations} {of~Orlicz} {Cohomology} and {Poincar\'e{\textendash}Sobolev{\textendash}Orlicz} {Inequalities}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1079--1090},
     year = {2019},
     volume = {16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a138/}
}
TY  - JOUR
AU  - V. Gol'dshtein
AU  - Ya. A. Kopylov
TI  - Some Calculations of Orlicz Cohomology and Poincaré–Sobolev–Orlicz Inequalities
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1079
EP  - 1090
VL  - 16
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a138/
LA  - en
ID  - SEMR_2019_16_a138
ER  - 
%0 Journal Article
%A V. Gol'dshtein
%A Ya. A. Kopylov
%T Some Calculations of Orlicz Cohomology and Poincaré–Sobolev–Orlicz Inequalities
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1079-1090
%V 16
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a138/
%G en
%F SEMR_2019_16_a138
V. Gol'dshtein; Ya. A. Kopylov. Some Calculations of Orlicz Cohomology and Poincaré–Sobolev–Orlicz Inequalities. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1079-1090. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a138/

[1] R. P. Agarwal, S. Ding, C. A. Nolder, Inequalities for Differential Forms, Springer, Berlin, 2009 | MR | Zbl

[2] P. G. Dolya, Mathematical Methods of Computer Tomography. Supplement I. Introduction to the Theory of Distributions, Kharkiv National University, Kharkiv, 2012 http://geometry.karazin.ua/resources/documents/20140424194043_9a57d424.pdf

[3] V. M. Gol$'$dshtein, V. I. Kuz$'$minov, I. A. Shvedov, “Differential forms on Lipschitz manifolds”, Siberian Math. J., 23:2 (1982), 151–161 | DOI | MR | Zbl

[4] V. Gol'dshtein, M. Troyanov, “Sobolev inequalities for differential forms and $L_{q,p}$-cohomology”, J. Geom. Anal., 16:4 (2006), 597–632 | DOI | MR | Zbl

[5] T. Iwaniec, A. Lutoborski, “Integral estimates for null Lagrangians”, Arch. Rational Mech. Anal., 125:1 (1993), 25–79 | DOI | MR | Zbl

[6] T. Iwaniec, G. Martin, Geometric Function Theory and Nonlinear Analysis, Oxford University Press, Oxford, 2001 | MR | Zbl

[7] Ya. A. Kopylov, R. A. Panenko, “De Rham regularization operators in Orlicz spaces of differential forms on Riemannian manifolds”, Sib. Élektron. Mat. Izv., 12 (2015), 361–371 | MR | Zbl

[8] Ya. A. Kopylov, “Orlicz spaces of differential forms on Riemannian manifolds: duality and cohomology”, Probl. Anal. Issues Anal., 6(24):2 (2017), 57–80 | DOI | MR | Zbl

[9] M. A. Krasnosel'skiĭ, Ya. B. Rutickii, Convex Functions and Orlicz Spaces, P. Noordhoff Ltd, Groningen, 1961 | MR | Zbl

[10] M. M. Rao, Z. D. Ren, Theory of Orlicz Spaces, Pure and Applied Mathematics, 146, Marcel Dekker, New York etc., 1991 | MR | Zbl