A boundary value problem for the Sturm--Liouville equation with piecewise entire potential on the curve and solution discontinuity conditions
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1005-1027.

Voir la notice de l'article provenant de la source Math-Net.Ru

For large values of the spectral parameter module, the asymptotics of solutions of the standard Sturm–Liouville equation with a piecewise-entire potential along an lying in the complex plane arbitrary shape curve with a finite number of points in which the solutions and (or) their derivatives undergo discontinuities independent of the spectral parameter is obtained. The eigenvalue problem is investigated for the case of decaying boundary conditions.
Keywords: equation along the curve, decision gap conditions, piecewise-entire potential, asymptotics of solutions, asymptotics of the spectrum.
@article{SEMR_2019_16_a137,
     author = {A. A. Golubkov},
     title = {A boundary value problem for the {Sturm--Liouville} equation with piecewise entire potential on the curve and solution discontinuity conditions},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1005--1027},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a137/}
}
TY  - JOUR
AU  - A. A. Golubkov
TI  - A boundary value problem for the Sturm--Liouville equation with piecewise entire potential on the curve and solution discontinuity conditions
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1005
EP  - 1027
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a137/
LA  - ru
ID  - SEMR_2019_16_a137
ER  - 
%0 Journal Article
%A A. A. Golubkov
%T A boundary value problem for the Sturm--Liouville equation with piecewise entire potential on the curve and solution discontinuity conditions
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1005-1027
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a137/
%G ru
%F SEMR_2019_16_a137
A. A. Golubkov. A boundary value problem for the Sturm--Liouville equation with piecewise entire potential on the curve and solution discontinuity conditions. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1005-1027. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a137/

[1] J. Walter, “Regular eigenvalue problems with eigenvalue parameter in the boundary condition”, Mathematische Zeitschrift, 133:4 (1973), 301–312 | DOI | MR | Zbl

[2] B.M. Levitan, I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Mathematics and Its Applications (Soviet Series), 59, Kluwer Academic Publishers, 1991 | MR

[3] V.A. Yurko,, “Boundary value problems with discontinuity conditions in an interior point of the interval”, Differential Equations, 36:8 (2000), 1266–1269 | DOI | MR | Zbl

[4] R. Mennicken, M. Möller, Non-Self-Adjoint Boundary Eigenvalue Problems, North-Holland Mathematic Studies, 192, Elsevier, Amsterdam, 2003 | MR | Zbl

[5] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, New York, 1955 | MR | Zbl

[6] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover Publications, New York, 1988 | MR

[7] M.V. Fedoryuk, Asymptotic Analysis: Linear Ordinary Differential Equations, Springer-Verlag, Berlin, 1993 | MR | Zbl

[8] Kh.K. Ishkin, “On localization of the spectrum of the problem with complex weight”, Journal of Mathematical Sciences, 150:6 (2008), 2488–2499 | DOI | MR | Zbl

[9] Kh.K. Ishkin, “Localization criterion for the spectrum of the Sturm–Liouville operator on a curve”, St. Petersburg Math. J., 28:1 (2017), 37–63 | DOI | MR | Zbl

[10] Kh.K. Ishkin, A.V. Rezbaev, “To the Davies's formula on the distribution of eigenvalues of a non-self-adjoint differential operator”, Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, 153, 2018, 84–93 (in Russian) | MR

[11] A.A. Golubkov, “Inverse problem for Sturm–Liouville operators in the complex plane”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 18:2 (2018), 144–156 (in Russian) | DOI | MR

[12] Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 74:2 (2019), 37–41 | DOI | MR | Zbl

[13] J.J. Duistermaat, F.A. Grünbaum, “Differential equations in the spectral parameter”, Communications in Mathematical Physics, 103:2 (1986), 177–240 | DOI | MR | Zbl

[14] B. Ja. Levin, Distribution of Zeros of Entire Functions, Translations of Mathematical Monographs, 5, Amer. Math. Soc., Providence, R.I., 1980 | MR

[15] R. Bellman, K. L. Cooke, Differential-Difference Equations, Mathematics in Science and Engineering, 6, Academic Press, New York–London, 1963 | MR | Zbl

[16] A. F. Leont'ev, Entire Functions. Series of Exponentials, Nauka, M., 1983 (in Russian) | MR | Zbl

[17] J. Horn, “Verwendung asymptotischer darstellungen zur untersuchung der integrale einer speciellen linearen differentialgleichung. II”, Math. Ann., 49:3–4 (1897), 473–496 | DOI | MR

[18] R. E. Langer, “On the zeros of exponential sums and integrals”, Bulletin of the American Mathematical Society, 37 (1931), 213–239 | DOI | MR | Zbl

[19] H. L. Turrittin,, “Asymptotic distribution of zeros for certain exponential sums”, American Journal of Mathematics, 66:2 (1944), 199–228 | DOI | MR | Zbl

[20] D. G. Dickson, Expansions in Series of Solutions of Linear Difference-Differential and Infinite Order Differential Equations with Constant Coefficients, Memoirs of the American Mathematical Society, 23, 1957 | MR | Zbl

[21] Matematicheskiĭ Sbornik, 75(117):4 (1968), 558–566 | DOI | MR | Zbl

[22] Trudy Seminara imeni I. G. Petrovskogo, 8, 1982, 211–217 | DOI | MR