Generalized condensers and vector measures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 683-691.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are established the relations between capacity of generalized condenser and modulus of vector measures configurations.
Keywords: generalized condensers, capacity of condenser, Muckenhoupt weight, vector measures.
@article{SEMR_2019_16_a134,
     author = {Yu. V. Dymchenko and V. A. Shlyk},
     title = {Generalized condensers and vector measures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {683--691},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a134/}
}
TY  - JOUR
AU  - Yu. V. Dymchenko
AU  - V. A. Shlyk
TI  - Generalized condensers and vector measures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 683
EP  - 691
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a134/
LA  - ru
ID  - SEMR_2019_16_a134
ER  - 
%0 Journal Article
%A Yu. V. Dymchenko
%A V. A. Shlyk
%T Generalized condensers and vector measures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 683-691
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a134/
%G ru
%F SEMR_2019_16_a134
Yu. V. Dymchenko; V. A. Shlyk. Generalized condensers and vector measures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 683-691. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a134/

[1] Yu. V. Dymchenko, V.A. Shlyk, “Capacity of polycondenser and modulus of family of vector measures”, Analit. teoriya chisel i teoriya funkcii. 24, Zap. nauchn. sem. POMI, 371, 2009, 56–68 | MR

[2] Yu. V. Dymchenko, V.A. Shlyk, “On a problem of Dubinin for the capacity of a condenser with a finite number of plates”, Mat. Zametki, 103:6 (2018), 841–852 | DOI | MR | Zbl

[3] A.V. Sychev, Modules and space quasiconformal mappings, “Nauka”, Novosibirsk, 1983

[4] H. Aikawa, M. Ohtsuka, “Extremal lenth of vector measures”, Ann. Acad. Sci. Fenn. Ser. A, 24 (1999), 61–88 | MR | Zbl

[5] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Birkhauser / Springer, Basel, 2014 | MR | Zbl

[6] B. Fuglede, “Extremal length and functional completion”, Acta Math., 126:3 (1957), 171–219 | DOI | MR

[7] M. Ohtsuka, Extremal length and precise functions, GAKUTO International Series, Mathematical Sciences and Applications, 19, Gakkōtosho, Tokyo, 2003 | MR | Zbl