Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a132, author = {A. A. Illarionov}, title = {Solution of functional equations related to elliptic {functions.~II}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {481--492}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/} }
A. A. Illarionov. Solution of functional equations related to elliptic functions.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 481-492. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/
[1] V.M. Buchstaber, D.V. Leikin, “Trilinear functional equations”, Russian Math. Surveys, 60:2 (2005), 341–343 | DOI | MR
[2] V.M. Buchstaber, D.V. Leikin, “Addition Laws on Jacobian Varieties of Plane Algebraic Curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl
[3] V.M. Buchstaber, I.M. Krichever, “Integrable equations, addition theorems, and the Riemann-Schottky problem”, Russian Math. Surveys, 61:1 (2006), 19–78 | DOI | MR | Zbl
[4] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl
[5] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:1 (1994), 591–610 | DOI | MR | Zbl
[6] P. Sinopoulos, “Generalized sine equation. I”, Aequationes Math., 48:2–3 (1994), 171–193 | DOI | MR | Zbl
[7] M. Bonk, “The Characterization of Theta Functions by Functional Equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl
[8] M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1–2 (1997), 54–72 | DOI | MR | Zbl
[9] A. Jarai, W. Sander, “On the characterization of Weierstrass's sigma function”, Functional equations-results and advances, Adv. Math. (Dordrecht), 3, 2002, 29–79 | MR | Zbl
[10] V. A. Bykovskii, “Hyperquasipolynomials and their applications”, Funct. Anal. Appl., 50:3 (2016), 193–203 | DOI | MR | Zbl
[11] V. A. Bykovskii, “On the rank of odd hyper-quasi-polynomials”, Dokl. Math., 94:2 (2016), 527–528 | DOI | MR | Zbl
[12] A. A. Illarionov, “Functional Equations and Weierstrass Sigma-Functions”, Funct. Anal. Appl., 50:4 (2016), 281–290 | DOI | MR | Zbl
[13] A. A. Illarionov, “Solution of functional equations related to elliptic functions”, Proc. Steklov Inst. Math., 299 (2017), 96–108 | DOI | MR | Zbl
[14] A. A. Illarionov, M. A. Romanov, “Hyperquasipolynomials for the Theta-Function”, Funct. Anal. Appl., 52:3 (2018), 228–231 | DOI | MR | Zbl
[15] A. A. Illarionov, “On products of Weierstrass sigma functions”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 73–84 | MR
[16] A. A. Illarionov, “Solutions of a functional equation concerning with trilinear differential operators”, Dal'nevost. Mat. Zh., 16:2 (2016), 169–180 | MR | Zbl
[17] T. Levi-Civita, “Sulle funzioni che ammettono una formula d'addizione del tipo $f(x+y) = \sum_{i=1}^n X_i(x) Y_i(y)$”, Rom. Acc. L. Rend., 22:2 (2013), 181–183
[18] J.M. Almira, E.V. Shulman, “On certain generalizations of the Levi-Civita and Wilson functional equations”, Aequat. Math., 91:5 (2017), 921–931 | DOI | MR | Zbl
[19] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl