Solution of functional equations related to elliptic functions.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 481-492

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $s,m, d\in \mathbb{N}$, $s\ge 2$. We solve the functional equation \begin{gather*} f_1(\mathbf{u}_1+\mathbf{v})\ldots f_{s-1}(\mathbf{u}_{s-1}+\mathbf{v})f_s(\mathbf{u}_1+\ldots +\mathbf{u}_{s-1}-\mathbf{v}) \\ =\sum_{j=1}^{m} \phi_j(\mathbf{u}_1,\ldots,\mathbf{u}_{s-1})\psi_j(\mathbf{v}), \end{gather*} for unknown entire functions $f_1,\ldots,f_s:\mathbb{C}^d\to \mathbb{C}$, $\phi_j: (\mathbb{C}^d)^{s-1}\to \mathbb{C}$, $\psi_j: \mathbb{C}^d\to \mathbb{C}$ in the case of $m\le s+1$. All non-elementary solutions are described by the Weierstrass sigma-function. Previously, such results were known only for $s=2$, $m=1,2$, as well as for $d=1$, $s=2,3$. The considered equation arises in the study of polylinear functional-differential operators and multidimensional vector addition theorems.
Keywords: addition theorem, functional equation, Weierstrass sigma-function, theta function, elliptic function.
@article{SEMR_2019_16_a132,
     author = {A. A. Illarionov},
     title = {Solution of functional equations related to elliptic {functions.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {481--492},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Solution of functional equations related to elliptic functions.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 481
EP  - 492
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/
LA  - ru
ID  - SEMR_2019_16_a132
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Solution of functional equations related to elliptic functions.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 481-492
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/
%G ru
%F SEMR_2019_16_a132
A. A. Illarionov. Solution of functional equations related to elliptic functions.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 481-492. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/