Solution of functional equations related to elliptic functions.~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 481-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $s,m, d\in \mathbb{N}$, $s\ge 2$. We solve the functional equation \begin{gather*} f_1(\mathbf{u}_1+\mathbf{v})\ldots f_{s-1}(\mathbf{u}_{s-1}+\mathbf{v})f_s(\mathbf{u}_1+\ldots +\mathbf{u}_{s-1}-\mathbf{v}) \\ =\sum_{j=1}^{m} \phi_j(\mathbf{u}_1,\ldots,\mathbf{u}_{s-1})\psi_j(\mathbf{v}), \end{gather*} for unknown entire functions $f_1,\ldots,f_s:\mathbb{C}^d\to \mathbb{C}$, $\phi_j: (\mathbb{C}^d)^{s-1}\to \mathbb{C}$, $\psi_j: \mathbb{C}^d\to \mathbb{C}$ in the case of $m\le s+1$. All non-elementary solutions are described by the Weierstrass sigma-function. Previously, such results were known only for $s=2$, $m=1,2$, as well as for $d=1$, $s=2,3$. The considered equation arises in the study of polylinear functional-differential operators and multidimensional vector addition theorems.
Keywords: addition theorem, functional equation, Weierstrass sigma-function, theta function, elliptic function.
@article{SEMR_2019_16_a132,
     author = {A. A. Illarionov},
     title = {Solution of functional equations related to elliptic {functions.~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {481--492},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/}
}
TY  - JOUR
AU  - A. A. Illarionov
TI  - Solution of functional equations related to elliptic functions.~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 481
EP  - 492
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/
LA  - ru
ID  - SEMR_2019_16_a132
ER  - 
%0 Journal Article
%A A. A. Illarionov
%T Solution of functional equations related to elliptic functions.~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 481-492
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/
%G ru
%F SEMR_2019_16_a132
A. A. Illarionov. Solution of functional equations related to elliptic functions.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 481-492. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a132/

[1] V.M. Buchstaber, D.V. Leikin, “Trilinear functional equations”, Russian Math. Surveys, 60:2 (2005), 341–343 | DOI | MR

[2] V.M. Buchstaber, D.V. Leikin, “Addition Laws on Jacobian Varieties of Plane Algebraic Curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | MR | Zbl

[3] V.M. Buchstaber, I.M. Krichever, “Integrable equations, addition theorems, and the Riemann-Schottky problem”, Russian Math. Surveys, 61:1 (2006), 19–78 | DOI | MR | Zbl

[4] R. Rochberg, L. Rubel, “A Functional Equation”, Indiana Univ. Math. J., 41:2 (1992), 363–376 | DOI | MR | Zbl

[5] M. Bonk, “The addition theorem of Weierstrass's sigma function”, Math. Ann., 298:1 (1994), 591–610 | DOI | MR | Zbl

[6] P. Sinopoulos, “Generalized sine equation. I”, Aequationes Math., 48:2–3 (1994), 171–193 | DOI | MR | Zbl

[7] M. Bonk, “The Characterization of Theta Functions by Functional Equations”, Abh. Math. Sem. Univ. Hamburg, 65 (1995), 29–55 | DOI | MR | Zbl

[8] M. Bonk, “The addition formula for theta function”, Aequationes Math., 53:1–2 (1997), 54–72 | DOI | MR | Zbl

[9] A. Jarai, W. Sander, “On the characterization of Weierstrass's sigma function”, Functional equations-results and advances, Adv. Math. (Dordrecht), 3, 2002, 29–79 | MR | Zbl

[10] V. A. Bykovskii, “Hyperquasipolynomials and their applications”, Funct. Anal. Appl., 50:3 (2016), 193–203 | DOI | MR | Zbl

[11] V. A. Bykovskii, “On the rank of odd hyper-quasi-polynomials”, Dokl. Math., 94:2 (2016), 527–528 | DOI | MR | Zbl

[12] A. A. Illarionov, “Functional Equations and Weierstrass Sigma-Functions”, Funct. Anal. Appl., 50:4 (2016), 281–290 | DOI | MR | Zbl

[13] A. A. Illarionov, “Solution of functional equations related to elliptic functions”, Proc. Steklov Inst. Math., 299 (2017), 96–108 | DOI | MR | Zbl

[14] A. A. Illarionov, M. A. Romanov, “Hyperquasipolynomials for the Theta-Function”, Funct. Anal. Appl., 52:3 (2018), 228–231 | DOI | MR | Zbl

[15] A. A. Illarionov, “On products of Weierstrass sigma functions”, Investigations on linear operators and function theory. Part 46, Zap. Nauchn. Sem. POMI, 467, POMI, St. Petersburg, 2018, 73–84 | MR

[16] A. A. Illarionov, “Solutions of a functional equation concerning with trilinear differential operators”, Dal'nevost. Mat. Zh., 16:2 (2016), 169–180 | MR | Zbl

[17] T. Levi-Civita, “Sulle funzioni che ammettono una formula d'addizione del tipo $f(x+y) = \sum_{i=1}^n X_i(x) Y_i(y)$”, Rom. Acc. L. Rend., 22:2 (2013), 181–183

[18] J.M. Almira, E.V. Shulman, “On certain generalizations of the Levi-Civita and Wilson functional equations”, Aequat. Math., 91:5 (2017), 921–931 | DOI | MR | Zbl

[19] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl