On the convergence of the Luzin integral and its analogues
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 85-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the convergence at a fixed point of the singular integral of Luzin and its analogues. We present sufficient conditions in terms of the Fourier coefficients of the given integrable function for such convergence.
Keywords: trigonometric conjugate function, trigonometric conjugate series, Luzin integral.
@article{SEMR_2019_16_a127,
     author = {K. I. Knizhov and I. V. Podvigin},
     title = {On the convergence of the {Luzin} integral and its analogues},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {85--95},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a127/}
}
TY  - JOUR
AU  - K. I. Knizhov
AU  - I. V. Podvigin
TI  - On the convergence of the Luzin integral and its analogues
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 85
EP  - 95
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a127/
LA  - ru
ID  - SEMR_2019_16_a127
ER  - 
%0 Journal Article
%A K. I. Knizhov
%A I. V. Podvigin
%T On the convergence of the Luzin integral and its analogues
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 85-95
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a127/
%G ru
%F SEMR_2019_16_a127
K. I. Knizhov; I. V. Podvigin. On the convergence of the Luzin integral and its analogues. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 85-95. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a127/

[1] Zygmund A., Trigonometric Series, v. I, Second edition, Cambridge University Press, Cambridge, 1959 | MR | Zbl

[2] v. I, II, Pergamon Press, Oxford, 1964 | MR

[3] Estrada R., Vindas J., “On the point behavior of Fourier series and conjugate series”, Z. Anal. Anwend., 29:4 (2010), 487–504 | DOI | MR | Zbl

[4] Theory Probab. Appl., 6:1 (1961), 87–93 | DOI | MR

[5] Sb. Math., 202:8 (2011), 1105–1125 | DOI | DOI | MR | Zbl

[6] Trans. Moscow Math. Soc., 77 (2016), 1–53 | DOI | MR | Zbl

[7] Dokl. Math., 97:3 (2018), 211–214 | DOI | MR | Zbl

[8] Russian Math. Surveys, 51:4 (1996), 653–703 | DOI | DOI | MR | Zbl

[9] Springer, New York, 1982 | MR | Zbl | Zbl

[10] Luzin N.N, Integral and trigonometric series, Editing and commentary by N. K. Bari and D. E. Men'shov, Gosudarstv. Izdat. Tehn.-Teor. Lit., M.–L., 1951 (Russian) | MR

[11] Thompson B. S., Bruckner J. B., Bruckner A.Ṁ., Elementary Real Analysis, Second Edition, ClassicalRealAnalysis.com, 2008

[12] Rudin W., Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973 | MR | Zbl