Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a127, author = {K. I. Knizhov and I. V. Podvigin}, title = {On the convergence of the {Luzin} integral and its analogues}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {85--95}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a127/} }
TY - JOUR AU - K. I. Knizhov AU - I. V. Podvigin TI - On the convergence of the Luzin integral and its analogues JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 85 EP - 95 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a127/ LA - ru ID - SEMR_2019_16_a127 ER -
K. I. Knizhov; I. V. Podvigin. On the convergence of the Luzin integral and its analogues. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 85-95. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a127/
[1] Zygmund A., Trigonometric Series, v. I, Second edition, Cambridge University Press, Cambridge, 1959 | MR | Zbl
[2] v. I, II, Pergamon Press, Oxford, 1964 | MR
[3] Estrada R., Vindas J., “On the point behavior of Fourier series and conjugate series”, Z. Anal. Anwend., 29:4 (2010), 487–504 | DOI | MR | Zbl
[4] Theory Probab. Appl., 6:1 (1961), 87–93 | DOI | MR
[5] Sb. Math., 202:8 (2011), 1105–1125 | DOI | DOI | MR | Zbl
[6] Trans. Moscow Math. Soc., 77 (2016), 1–53 | DOI | MR | Zbl
[7] Dokl. Math., 97:3 (2018), 211–214 | DOI | MR | Zbl
[8] Russian Math. Surveys, 51:4 (1996), 653–703 | DOI | DOI | MR | Zbl
[9] Springer, New York, 1982 | MR | Zbl | Zbl
[10] Luzin N.N, Integral and trigonometric series, Editing and commentary by N. K. Bari and D. E. Men'shov, Gosudarstv. Izdat. Tehn.-Teor. Lit., M.–L., 1951 (Russian) | MR
[11] Thompson B. S., Bruckner J. B., Bruckner A.Ṁ., Elementary Real Analysis, Second Edition, ClassicalRealAnalysis.com, 2008
[12] Rudin W., Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973 | MR | Zbl