Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a126, author = {A. P. Kopylov}, title = {Unique determination of~conformal type {for~domains.~II}}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1205--1214}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a126/} }
A. P. Kopylov. Unique determination of~conformal type for~domains.~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1205-1214. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a126/
[1] A.P. Kopylov, “Unique determination of conformal type for domains”, Sib. Elektron. Mat. Izv., 16 (2019), 692–708 | MR | Zbl
[2] A.P. Kopylov, “Unique determination of convex polyhedral domains by relative conformal moduli of boundary condensers”, Dokl. Math., 74:2 (2006), 637–639 | DOI | MR | Zbl
[3] A.P. Kopylov, “On the unique determination of domains in Euclidean spaces”, J. of Math. Sciences, 153:6 (2008), 869–898 | DOI | MR | Zbl
[4] A.P. Kopylov, “Unique determination of domains”, Differential Geometry and its Applications, Proceedings of International Conference DGA 2007 in Honour of L. Euler (Olomouc, 2007), World Scientific, Singapore, 2008, 157–169 | DOI | MR | Zbl
[5] A.P. Kopylov, “Unique determination of convex polyhedral domains in three-dimensional Euclidean space by relative conformal moduli of boundary condensers”, Dokl. Math., 84:3 (2011), 789–790 | DOI | MR | Zbl
[6] V.V. Aseev, A.P. Kopylov, “Unique determination of three-dimensional convex polyhedral domains by relative conformal moduli of boundary condensers”, Sibirskii Zhurnal Chistoi i Prikladnoi Matematiki, 17:4 (2017), 3–17 | MR
[7] Yu.G. Reshetnyak, Stability Theorems in Geometry and Analysis, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl
[8] A.D. Aleksandrov, N. Yu. Netsvetaev, Geometry, BXV-Peterburg, St. Petersburg, 2010 (in Russian) | MR
[9] A.D. Aleksandrov, Geometry, v. 2, Convex Polyhedra, Nauka, Novosibirsk, 2007 (in Russian) | MR | Zbl
[10] M.A. Lavrent'ev, B.V. Shabat, Methods for the Theory of Functions of a Complex Variable, Nauka, M., 1987 (in Russian) | Zbl
[11] J. Väisälä, Lectures on $n$-Dimensional Quasiconformal Mappings, Springer, Berlin–Heidelberg–New York, 1973 | MR
[12] F.W. Gehring, J. Väisälä, “The coefficients of quasiconformality of domains in space”, Acta Mathematica, 114:1–2 (1965), 1–70 | DOI | MR | Zbl