Dense suspensions and
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2124-2133.

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-velocity mathematical model is proposed for slurry flows. Equations agree with thermodynamic laws. The sedimentation problem is addressed. Particularly, the Boycott effect is justified; we prove that, due to gravitation, the settling velocity increases in the tilted vessel.
Mots-clés : gravitational convection, particle sedimentation, particles
Keywords: suspension, disperse mixture, tilted vessel, interphase force.
@article{SEMR_2019_16_a123,
     author = {V. V. Shelukhin and V. V. Neverov and A. M. Krivtsov},
     title = {Dense suspensions and},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2124--2133},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a123/}
}
TY  - JOUR
AU  - V. V. Shelukhin
AU  - V. V. Neverov
AU  - A. M. Krivtsov
TI  - Dense suspensions and
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2124
EP  - 2133
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a123/
LA  - ru
ID  - SEMR_2019_16_a123
ER  - 
%0 Journal Article
%A V. V. Shelukhin
%A V. V. Neverov
%A A. M. Krivtsov
%T Dense suspensions and
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2124-2133
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a123/
%G ru
%F SEMR_2019_16_a123
V. V. Shelukhin; V. V. Neverov; A. M. Krivtsov. Dense suspensions and. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2124-2133. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a123/

[1] J.J. Stickel, R.L. Powell, “Fluid mechanics and rheology of dense suspensions”, Annu. Rev. Fluid Mech., 37 (2005), 129–149 | DOI | MR | Zbl

[2] A. Einstein, “A new determination of molecular dimensions”, Ann. Phys., 4 (1906), 289–306 | DOI | Zbl

[3] G. Batchelor, J. Green, “The determination of the bulk stress in a suspension of spherical particles to order c2”, J. Fluid Mech., 56 (1972), 401–427 | DOI | Zbl

[4] I.M. Krieger, T. Dougerty, “A mechanism for non-Newtonian flow in suspensions of rigid spheres”, Trans. Soc. Rheol., 3 (1960), 137–152 | DOI | Zbl

[5] D. Quemada, “Rheology of concentrated disperse systems III. General features of the propose non-newtonian model. Comparison with experimental data”, Rheol. Acta, 17:6 (1978), 643–653 | DOI

[6] J.F. Morris, F. Boulay, “Curvilinear flows of noncolloidal suspensions: The role of normal stresses”, J. Rheol., 43 (1999), 1213–1237 | DOI

[7] L.D. Landau, E.M. Lifshits, Fluid mechabics. Course of theoretical physics, 2nd ed., Pergamon Press, Oxford etc., 1987 | MR | Zbl

[8] I.M. Khalatnikov, An introduction to the theory of superfluidity, Reprint of the 1965 edition, Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, 1989 | MR

[9] Yu.V. Perepechko, K.E. Sorokin, “Two-velocity dynamics of heterophase media”, Journal of Engineering Thermophysics, 22:3 (2013), 241–246 | DOI

[10] S.R. de Groot, P. Mazur, Non equilibrium thermodynamics, North-Holland, Amsterdam, 1962 | MR | Zbl

[11] E.V. Dontsov, A.P. Peirce, “Slurry flow, gravitational settling and a proppant transport model for hydraulic fracture”, J. Fluid Mech., 760 (2014), 567–590 | DOI | MR

[12] Yu.A. Nevskii, A.N. Osiptsov, “Slow gravitational convection of disperse systems in domain with inclined boundaries”, Fluid Dynamics, 46:2 (2011), 225–239 | DOI | MR | Zbl

[13] A.E. Boycott, “Sedimentation of Blood Corpuscles”, Nature, 104 (1920), 532–532 | DOI

[14] V.V. Shelukhin, “Thermodynamics of two-phase granular fluids”, Journal of Non-Newtonian Fluid Mechanics, 262 (2018), 25–37 | DOI | MR

[15] M. Ishii, K. Mishima, “Two-fluid model and hydrodynamic constitutive relations”, Nucl. Eng. and Des., 82:2–3 (1984), 107–126 | DOI

[16] A.A. Osiptsov, “Fluid mechanics of hydraulic fracturing: a review”, Journal of petroleum science and engineering, 156 (2017), 513–535 | DOI

[17] R. Temam, “Sur l'approximation de la solution des equations de Navier-Stokes par la méthode des fractionnarires II”, Arch. Rational Mech. Anal., 33 (1969), 377–385 | DOI | MR | Zbl