Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a122, author = {O. V. Germider and V. N. Popov}, title = {An application of the {Chebyshev} polynomials for the calculation of a rarefied gas flow in the cylindrical geometry of the channels}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1947--1959}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a122/} }
TY - JOUR AU - O. V. Germider AU - V. N. Popov TI - An application of the Chebyshev polynomials for the calculation of a rarefied gas flow in the cylindrical geometry of the channels JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1947 EP - 1959 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a122/ LA - ru ID - SEMR_2019_16_a122 ER -
%0 Journal Article %A O. V. Germider %A V. N. Popov %T An application of the Chebyshev polynomials for the calculation of a rarefied gas flow in the cylindrical geometry of the channels %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1947-1959 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a122/ %G ru %F SEMR_2019_16_a122
O. V. Germider; V. N. Popov. An application of the Chebyshev polynomials for the calculation of a rarefied gas flow in the cylindrical geometry of the channels. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1947-1959. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a122/
[1] C. H. Kamphorst, P. Rodrigues, L. B. Barichello, “A Closed-Form Solution of a Kinetic Integral Equation for Rarefied Gas Flow in a Cylindrical Duct”, Applied Mathematics, 5:10 (2016), 1516–1527 | DOI
[2] F. M. Sharipov, V. D. Seleznev, Motion of rarefied gases in channels and microchannels, UrO RAN, Yekaterinburg, 2008 (in Russian)
[3] I. Graur, F. Sharipov, “Non-isothermal flow of rarefied gas through a long pipe with elliptic cross section”, Microfluid Nanofluid, 6:2 (2009), 267–275 | DOI
[4] O. V. Germider, V. N. Popov, “Nonisothermal Free-Molecular Flow of Gas in an Elliptic Channel with a Circular Cylindrical Element Inside”, Technical Physics, 64:1 (2019), 19–23 | DOI
[5] C. H. Kamphorst, P. Rodrigues, L. B. Barichello, “A spectral approach to compute rarefied gas flows in Cylindrical geometry”, International Nuclear Atlantic Conference – INAC 2009, 2009 | MR | Zbl
[6] I. Graur, F. Sharipov, “Gas flow through an elliptical tube over the whole range of the gas rarefaction”, European Journal of Mechanics B Fluids, 27 (2008), 335–345 | DOI | MR | Zbl
[7] C. E. Siewert, “Poiseuille and Thermal-Creep Flow in a Cylindrical Tube”, Journal of Computational Physics, 160 (2000), 470–480 | DOI | MR | Zbl
[8] O. V. Germider, V. N. Popov, “Mathematical modeling of heat transfer process in a rectangular channel in the problem of Poiseuille flow”, Siberian electronic mathematical reports, 13 (2016), 1401–1409 | MR | Zbl
[9] O. V. Germider, V. N. Popov, A. A. Yushkanov, “Mathematical simulation of heat and mass transfer processes in a rectangular channel depending on the accommodation coefficient of tangential momentum”, Siberian electronic mathematical reports, 15 (2018), 1011–1023 | MR | Zbl
[10] M. M. R. Williams, “A review of the rarefed gas dynamics theory associated with some classical problems in flow and heat transfer”, Z. angew. Math. Phys., 52 (2001), 500–516 | DOI | MR | Zbl
[11] J. Mason, D. Handscomb, Chebyshev polynomials, CRC Press, Florida, 2003 | MR | Zbl
[12] E. Tohidi, “Application of Chebyshev collocation method for solving two classes of non-classical parabolic PDEs”, Ain Shams Engineering Journal, 6:1 (2015), 373–379 | DOI | MR
[13] J. P. Boyd, Chebyshev and Fourier spectral methods, Second Edition, DOVER Publications, Mineola, NY, 2001 | MR | Zbl
[14] M. N. Kogan, Rarefied Gas Dynamics, Plenum, New York, 1969
[15] C. W. Clenshaw, A. R. Curtis, “A method for numerical integration on an automatic computer”, Num. Math., 2 (1960), 197–205 | DOI | MR | Zbl