Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a121, author = {A. A. Lomov}, title = {On convergence of {M.~Osborne'} inverse iteration algorithms for modified {Prony} method}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1916--1926}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a121/} }
TY - JOUR AU - A. A. Lomov TI - On convergence of M.~Osborne' inverse iteration algorithms for modified Prony method JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1916 EP - 1926 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a121/ LA - ru ID - SEMR_2019_16_a121 ER -
A. A. Lomov. On convergence of M.~Osborne' inverse iteration algorithms for modified Prony method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1916-1926. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a121/
[1] M. R. Osborne, G. K. Smyth, “A modified Prony algorithm for fitting functions defined by difference equations”, SIAM J. Sci. Statist. Comput., 12 (1991), 362–382 | DOI | MR | Zbl
[2] M. R. Osborne, G. K. Smyth, “A Modified Prony Algorithm for Exponential Function Fitting”, SIAM Journal of Scientific Computing, 16 (1995), 119–138 | DOI | MR | Zbl
[3] V. Pereyra, G. Scherer, “Exponential data fitting”, Exponential Data Fitting and Its Applications, Bentham Science Publishers, 2010, 1–26
[4] A. A. Lomov, “On convergence of the inverse iteration algorithm for modified Prony method”, SEMR, 15 (2018), 1513–1529 | MR | Zbl
[5] V. I. Kostin, “On extremum points of some function”, Upravlyaemye sistemy, 24, Institute of Mathematics of SB AS USSR, Novosibirsk, 1984, 35–42 (in Russian) | MR
[6] J. Petersson, Holmström K., “A review of the parameter estimation problem of fitting positive exponential sums to empirical data”, Applied Mathematics and Computation, 126:1 (2002), 31–61 | DOI | MR | Zbl
[7] B. Moor De, “Structured total least squares and $L_{2}$ approximation problems”, Linear Algebra Appl., 188–189 (1993), 163–207 | DOI | MR | Zbl
[8] M. R. Osborne, “Some special nonlinear least squares problems”, SIAM J. Numer. Anal., 12 (1975), 571–592 | DOI | MR | Zbl
[9] M. R. Osborne, “A class of nonlinear regression problems”, Data Representation, University of Queensland Press, St. Lucia, 1970, 94–101 | Zbl
[10] A. O. Egorshin, V. P. Budyanov, “Smoothing of signals and estimation of dynamic parameters in automatic systems using a digital computer”, Avtometriya, 1 (1973), 78–82 (in Russian)
[11] A. O. Egorshin, “Least squares method and the fast algorithms in variational problems of identification and filtration (VI method)”, Avtometriya, 1 (1988), 30–42 (in Russian)
[12] Journal of Mathematical Sciences, 195 (2013), 791–804 | DOI | MR | Zbl
[13] Journal of Mathematical Sciences, 188:4 (2013), 410–434 | DOI | MR | Zbl
[14] S. L. Marple, Digital spectral analysis with applications, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986 | MR