On convergence of M.~Osborne' inverse iteration algorithms for modified Prony method
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1916-1926

Voir la notice de l'article provenant de la source Math-Net.Ru

A convergence of two inverse iteration algorithms of M. Osborne in the nonlinear eigenvalue problem of modified Prony method under small perturbations is investigated.
Keywords: difference equations, parameter identification, modified Prony method, nonlinear eigenvalue problem, inverse iteration
Mots-clés : semilocal convergence.
@article{SEMR_2019_16_a121,
     author = {A. A. Lomov},
     title = {On convergence of {M.~Osborne'} inverse iteration algorithms for modified {Prony} method},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1916--1926},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a121/}
}
TY  - JOUR
AU  - A. A. Lomov
TI  - On convergence of M.~Osborne' inverse iteration algorithms for modified Prony method
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1916
EP  - 1926
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a121/
LA  - ru
ID  - SEMR_2019_16_a121
ER  - 
%0 Journal Article
%A A. A. Lomov
%T On convergence of M.~Osborne' inverse iteration algorithms for modified Prony method
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1916-1926
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a121/
%G ru
%F SEMR_2019_16_a121
A. A. Lomov. On convergence of M.~Osborne' inverse iteration algorithms for modified Prony method. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1916-1926. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a121/