Category of Chu spaces over S-Act category
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 709-717.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two categories of Chu spaces over the category of $S$-acts where $S$ is commutative monoid. More precisely, we find necessary and sufficient conditions for the transformation of the categories of Chu spaces to be an equalizer or a coequalizer in the language of the morphisms of the category of $S$-acts.
Keywords: Chu spaces, S-act, monoidal category, equalizer, coequalizer.
Mots-clés : Chu construction
@article{SEMR_2019_16_a12,
     author = {A. A. Stepanova and E. E. Skurihin and A. G. Sukhonos},
     title = {Category of {Chu} spaces over {S-Act} category},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {709--717},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a12/}
}
TY  - JOUR
AU  - A. A. Stepanova
AU  - E. E. Skurihin
AU  - A. G. Sukhonos
TI  - Category of Chu spaces over S-Act category
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 709
EP  - 717
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a12/
LA  - ru
ID  - SEMR_2019_16_a12
ER  - 
%0 Journal Article
%A A. A. Stepanova
%A E. E. Skurihin
%A A. G. Sukhonos
%T Category of Chu spaces over S-Act category
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 709-717
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a12/
%G ru
%F SEMR_2019_16_a12
A. A. Stepanova; E. E. Skurihin; A. G. Sukhonos. Category of Chu spaces over S-Act category. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 709-717. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a12/

[1] Barr M., *-Autonomous Categories, Lecture Notes in Math., 752, Springer-Verlag, Berlin, 1979 | DOI | MR | Zbl

[2] Barr M., Wells C., Category Theory for Computing Science, Prentice Hall international series computer science Spectrum Book, Prentice Hall, 1998 | MR

[3] Gould V., Mikhalev A. V., Palyutin E. A., Stepanova A. A., “Model-theoretic properties of free, projective, and flat S-acts”, Journal Math. Sci., 164:2 (2010), 195–227 | DOI | MR | Zbl

[4] Kilp M., Knauer U., Mikhalev A. V., Monoids, Acts and Categories, Walter De Gruyter, Berlin–New York, 2000 | MR | Zbl

[5] S. Mac Lane, Categories for the Working Mathematician, 2nd. ed., Springer, New York, NY, 1998 | MR | Zbl

[6] Stepanova A. A., Skurihin E. E., Sukhonos A. G., “Category of Chu spaces over S-Act category”, Siberian Electronic Mathematical Reports, 14 (2017), 1220–1237 | MR | Zbl