Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a117, author = {A. S. Popov}, title = {Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1196--1204}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/} }
TY - JOUR AU - A. S. Popov TI - Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1196 EP - 1204 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/ LA - ru ID - SEMR_2019_16_a117 ER -
%0 Journal Article %A A. S. Popov %T Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$ %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1196-1204 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/ %G ru %F SEMR_2019_16_a117
A. S. Popov. Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1196-1204. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/
[1] A.N. Kazakov, V.I. Lebedev, “Gauss type quadrature formulas for a sphere that are invariant with respect to the group of dihedron”, Tr. Mat. Inst. Steklova, 203, 1994, 100–112 (in Russian) | MR | Zbl
[2] A.S. Popov, “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Modelling, 9:6 (1994), 535–546 | DOI | MR | Zbl
[3] A.S. Popov, “Cubature formulas on a sphere that are invariant with respect to a group of dihedron rotations with inversion D6h”, Numerical Analysis and Applications, 6:1 (2013), 49–53 | DOI | MR | Zbl
[4] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion D4h”, Siberian Electronic Mathematical Reports, 12 (2015), 457–464 (in Russian) | MR | Zbl
[5] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group D2h”, Siberian Electronic Mathematical Reports, 13 (2016), 252–259 (in Russian) | MR | Zbl
[6] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion D5d”, Siberian Electronic Mathematical Reports, 15 (2018), 389–396 (in Russian) | MR
[7] F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover, New York, 1956 | MR | Zbl
[8] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Nauka, M., 1989 (in Russian) | MR | Zbl
[9] A.S. Popov, “The search for the sphere of the best cubature formulae invariant under octahedral group of rotations”, Siberian J. Num. Math., 5:4 (2002), 367–372 (in Russian) | MR
[10] S.L. Sobolev, “On mechanical cubature formulas for the surface of a sphere”, Sibirskii Mat. Zh., 3:5 (1962), 769–796 (in Russian) | MR | Zbl
[11] A.S. Popov, “The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere”, Siberian J. of Numer. Mathematics, 8:2 (2005), 143–148 (in Russian) | Zbl
[12] A.S. Popov, “Cubature formulas invariant under the icosahedral group of rotations with inversion on a sphere”, Numerical Analysis and Applications, 10:4 (2017), 339–346 | DOI | MR | Zbl
[13] V.A. Ditkin, “On some approximate formulas for calculating triple integrals”, Dokl. Akad. Nauk SSSR, 62:4 (1948), 445–447 (in Russian) | MR | Zbl
[14] V.A. Ditkin, L.A. Lyusternik, “On a method of practical harmonic analysis on a sphere”, Vychisl. Matematika i Vychisl. Tekhnika, 1 (1953), 3–13 (in Russian) | MR | Zbl
[15] A.D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl
[16] V.I. Lebedev, “Nodes and weights of Gauss-Markov type quadrature formulas from 9th to 17th accuracy orders for a sphere which are invariant under the octahedral group with inversion”, Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 48–54 (in Russian) | MR | Zbl