Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1196-1204

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm of searching for the best (in a sense) cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion D3d is described. This algorithm is applied to find the parameters of all the best cubature formulas of this symmetry type up to the 35th order of accuracy.
Keywords: numerical integration, dihedral group of rotations.
Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2019_16_a117,
     author = {A. S. Popov},
     title = {Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1196--1204},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/}
}
TY  - JOUR
AU  - A. S. Popov
TI  - Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1196
EP  - 1204
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/
LA  - ru
ID  - SEMR_2019_16_a117
ER  - 
%0 Journal Article
%A A. S. Popov
%T Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1196-1204
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/
%G ru
%F SEMR_2019_16_a117
A. S. Popov. Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1196-1204. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/