Mots-clés : invariant cubature formulas, invariant polynomials
@article{SEMR_2019_16_a117,
author = {A. S. Popov},
title = {Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {1196--1204},
year = {2019},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/}
}
TY - JOUR
AU - A. S. Popov
TI - Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2019
SP - 1196
EP - 1204
VL - 16
UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/
LA - ru
ID - SEMR_2019_16_a117
ER -
%0 Journal Article
%A A. S. Popov
%T Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1196-1204
%V 16
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/
%G ru
%F SEMR_2019_16_a117
A. S. Popov. Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1196-1204. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a117/
[1] A.N. Kazakov, V.I. Lebedev, “Gauss type quadrature formulas for a sphere that are invariant with respect to the group of dihedron”, Tr. Mat. Inst. Steklova, 203, 1994, 100–112 (in Russian) | MR | Zbl
[2] A.S. Popov, “Cubature formulae for a sphere invariant under cyclic rotation groups”, Russ. J. Numer. Anal. Math. Modelling, 9:6 (1994), 535–546 | DOI | MR | Zbl
[3] A.S. Popov, “Cubature formulas on a sphere that are invariant with respect to a group of dihedron rotations with inversion D6h”, Numerical Analysis and Applications, 6:1 (2013), 49–53 | DOI | MR | Zbl
[4] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion D4h”, Siberian Electronic Mathematical Reports, 12 (2015), 457–464 (in Russian) | MR | Zbl
[5] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group D2h”, Siberian Electronic Mathematical Reports, 13 (2016), 252–259 (in Russian) | MR | Zbl
[6] A.S. Popov, “Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion D5d”, Siberian Electronic Mathematical Reports, 15 (2018), 389–396 (in Russian) | MR
[7] F. Klein, Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree, Dover, New York, 1956 | MR | Zbl
[8] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Nauka, M., 1989 (in Russian) | MR | Zbl
[9] A.S. Popov, “The search for the sphere of the best cubature formulae invariant under octahedral group of rotations”, Siberian J. Num. Math., 5:4 (2002), 367–372 (in Russian) | MR
[10] S.L. Sobolev, “On mechanical cubature formulas for the surface of a sphere”, Sibirskii Mat. Zh., 3:5 (1962), 769–796 (in Russian) | MR | Zbl
[11] A.S. Popov, “The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere”, Siberian J. of Numer. Mathematics, 8:2 (2005), 143–148 (in Russian) | Zbl
[12] A.S. Popov, “Cubature formulas invariant under the icosahedral group of rotations with inversion on a sphere”, Numerical Analysis and Applications, 10:4 (2017), 339–346 | DOI | MR | Zbl
[13] V.A. Ditkin, “On some approximate formulas for calculating triple integrals”, Dokl. Akad. Nauk SSSR, 62:4 (1948), 445–447 (in Russian) | MR | Zbl
[14] V.A. Ditkin, L.A. Lyusternik, “On a method of practical harmonic analysis on a sphere”, Vychisl. Matematika i Vychisl. Tekhnika, 1 (1953), 3–13 (in Russian) | MR | Zbl
[15] A.D. McLaren, “Optimal numerical integration on a sphere”, Math. Comput., 17:83 (1963), 361–383 | DOI | MR | Zbl
[16] V.I. Lebedev, “Nodes and weights of Gauss-Markov type quadrature formulas from 9th to 17th accuracy orders for a sphere which are invariant under the octahedral group with inversion”, Zh. Vychisl. Mat. Mat. Fiz., 15:1 (1975), 48–54 (in Russian) | MR | Zbl