Stability of three-parameter systems of two linear differential equations with delay. Part~II
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2055-2079.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of two linear autonomous differential equations with a limited delay and a term without delay is considered. Complete classification of all three-parameter systems is obtained. For every such system the stability criterion in analytic and geometric form is obtained.
Keywords: system of differential equations with delay, autonomous equations, asymptotic stability, stability domain, D-subdivision method.
@article{SEMR_2019_16_a110,
     author = {M. V. Mulyukov},
     title = {Stability of three-parameter systems of two linear differential equations with delay. {Part~II}},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2055--2079},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a110/}
}
TY  - JOUR
AU  - M. V. Mulyukov
TI  - Stability of three-parameter systems of two linear differential equations with delay. Part~II
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2055
EP  - 2079
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a110/
LA  - ru
ID  - SEMR_2019_16_a110
ER  - 
%0 Journal Article
%A M. V. Mulyukov
%T Stability of three-parameter systems of two linear differential equations with delay. Part~II
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2055-2079
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a110/
%G ru
%F SEMR_2019_16_a110
M. V. Mulyukov. Stability of three-parameter systems of two linear differential equations with delay. Part~II. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2055-2079. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a110/

[1] C. S. Hsu, S. J. Bhatt, “Stability charts for second-order dynamical systems with time lag”, J. Appl. Mech., 33:1 (1966), 113–118 | DOI | MR | Zbl

[2] C. S. Hsu, S. J. Bhatt, “Stability charts for second-order dynamical systems with time lag”, J. Appl. Mech., 33:1 (1966), 119–124 | DOI | MR | Zbl

[3] L. E. Jl'sgol'ts, S. B. Norkin, Introduction to the theory of differential equations with deviating argument, Nauka, M., 1971 (in Russian) | MR | Zbl

[4] M. V. Mulyukov, “Stability of three-parameter systems of two linear differential equations with delay. Part I”, Siberian Electronic Mathematical Reports (to appear) (in Russian)

[5] M. V. Mulyukov, “Stability of two-parameter systems of linear autonomous differential equations with bounded delay”, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 51 (2018), 79–122 | DOI | MR | Zbl

[6] M. V. Mulyukov, “The stability of the linear autonomous differential equation with distributed and concentrated delay”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki, 20:5 (2015), 1325–1331 (in Russian)

[7] M. V. Mulyukov, “Stability of inverted pendulum with delayed feedback”, Applied Mathematics and Control Sciences, 2017:4 (2017), 73–87 (Russian) | MR

[8] M. V. Mulyukov, “Asymptotic stability of the system of autonomous differential equations of delayed type with degenerate matrices”, Proceedings of $VII$ international conference «Modern methods of applied mathematics, control theory and computer technology» (Voronej, 2014), 268–270 (Russian)

[9] M. V. Mulyukov, “On stability of three-parameter system of two autonomous linear delay differential equations”, Proceedings of 2015 international conference «stability and control processes» in memory of V. I. Zubov, joined with 21st international workshop on beam dynamics and optimization (bdo) (Saint-Petersburg, 05–09 october 2015) | MR