On expansions of models of weakly o-minimal theories by binary predicates
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 673-682

Voir la notice de l'article provenant de la source Math-Net.Ru

Here questions of preservation of properties at expanding countably categorical weakly o-minimal structures non-being 1-indiscernible by an arbitrary binary predicate are studied. A criterion for preserving the countable categoricity of a weakly o-minimal expansion of convexity rank 1 is obtained.
Keywords: weak o-minimality, countable categoricity, expansion of models, equivalence-generating formula.
@article{SEMR_2019_16_a11,
     author = {S. S. Baizhanov and B. Sh. Kulpeshov},
     title = {On expansions of models of weakly o-minimal theories by binary predicates},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {673--682},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a11/}
}
TY  - JOUR
AU  - S. S. Baizhanov
AU  - B. Sh. Kulpeshov
TI  - On expansions of models of weakly o-minimal theories by binary predicates
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 673
EP  - 682
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a11/
LA  - ru
ID  - SEMR_2019_16_a11
ER  - 
%0 Journal Article
%A S. S. Baizhanov
%A B. Sh. Kulpeshov
%T On expansions of models of weakly o-minimal theories by binary predicates
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 673-682
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a11/
%G ru
%F SEMR_2019_16_a11
S. S. Baizhanov; B. Sh. Kulpeshov. On expansions of models of weakly o-minimal theories by binary predicates. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 673-682. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a11/