Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a11, author = {S. S. Baizhanov and B. Sh. Kulpeshov}, title = {On expansions of models of weakly o-minimal theories by binary predicates}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {673--682}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a11/} }
TY - JOUR AU - S. S. Baizhanov AU - B. Sh. Kulpeshov TI - On expansions of models of weakly o-minimal theories by binary predicates JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 673 EP - 682 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a11/ LA - ru ID - SEMR_2019_16_a11 ER -
S. S. Baizhanov; B. Sh. Kulpeshov. On expansions of models of weakly o-minimal theories by binary predicates. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 673-682. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a11/
[1] H.D. Macpherson, D. Marker, C. Steinhorn, “Weakly o-minimal structures and real closed fields”, Transactions of The American Mathematical Society, 352:12 (2000), 5435–5483 | DOI | MR | Zbl
[2] B. Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties”, The Journal of Symbolic Logic, 63:4 (1998), 1511–1528 | DOI | MR | Zbl
[3] Baizhanov S. S., Kulpeshov B. Sh., “Invariantnye svoistva pri obogascheniyakh modelei vpolne o-minimalnykh teorii”, Izvestiya Natsionalnoi Akademii nauk Respubliki Kazakhstan, seriya fiziko-matematicheskaya, 311:1 (2017), 65–71
[4] Baizhanov S. S., Kulpeshov B. Sh., “Obogaschenie modelei vpolne o-minimalnykh teorii unarnymi predikatami”, Tezisy dokladov ezhegodnoi nauchnoi aprelskoi konferentsii Instituta matematiki i matematicheskogo modelirovaniya KN MON RK (Almaty, 2017), 16–18
[5] Baizhanov S. S., Kulpeshov B. Sh., “Obogaschenie modelei schetno kategorichnykh slabo o-minimalnykh teorii unarnymi predikatami”, Tezisy mezhdunarodnoi konferentsii "Aktualnye problemy chistoi i prikladnoi matematiki", posvyaschennoi 100-letiyu akademika Taimanova A. D. (Almaty, 2017), 13–15
[6] S.S. Baizhanov, B.Sh. Kulpeshov, “Preserving properties of expansions of models of ordered theories by unary predicates”, Handbook of the 6th World Congress and School on Universal Logic (June 16–26, 2018, Vichy, France), Vichy University, 2018, 228–229 | MR
[7] S.S. Baizhanov, B.Sh. Kulpeshov, “Preservation of $\omega$-categoricity in expanding the models of weakly o-minimal theories”, Siberian Mathematical Journal, 59:2 (2018), 207–216 | DOI | MR | Zbl
[8] S.S. Baizhanov, B.Sh. Kulpeshov, “Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations”, Siberian Electronic Mathematical Reports, 15 (2018), 106–114 | MR | Zbl
[9] S.S. Baizhanov, B.Sh. Kulpeshov, “On expanding countably categorical weakly o-minimal theories by binary predicates”, News of the National Academy of Sciences of the Republic of Kazakhstan, 317:1 (2018), 18–24 | MR
[10] B.S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, The Journal of Symbolic Logic, 66:3 (2001), 1382–1414 | DOI | MR | Zbl
[11] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly o-minimal theories”, Annals of Pure and Applied Logic, 45:2 (2007), 354–367 | DOI | MR | Zbl
[12] B. Sh. Kulpeshov, “Countably categorical weakly o-minimal strtucres of finite convexity rank”, Siberian Mathematical Journal, 57:4 (2016), 606–617 | DOI | MR | Zbl
[13] B.S. Baizhanov, “One-types in weakly o-minimal theories”, Proceedings of Informatics and Control Problems Institute, Almaty, 1996, 75–88
[14] B.S. Baizhanov, B. Sh. Kulpeshov, “On behaviour of $2$-formulas in weakly o-minimal theories”, Mathematical Logic in Asia, Proceedings of the 9th Asian Logic Conference, eds. S. Goncharov, R. Downey, H. Ono, World Scientific, Singapore, 2006, 31–40 | DOI | MR | Zbl