A boundary value problem for a 3rd order equation with a changing direction of evolution
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2003-2012.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine a boundary value problem for a 3rd order equation with a changing direction of evolution. Under certain conditions, the existence of regular solutions in a suitable weighted Sobolev space is proven by regularization. The uniqueness of a generalized solution is also established as a consequence.
Keywords: mixed type equations, equations with a changing direction of evolution.
@article{SEMR_2019_16_a108,
     author = {A. N. Artyushin},
     title = {A boundary value problem for a 3rd order equation with a changing direction of evolution},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {2003--2012},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a108/}
}
TY  - JOUR
AU  - A. N. Artyushin
TI  - A boundary value problem for a 3rd order equation with a changing direction of evolution
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 2003
EP  - 2012
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a108/
LA  - ru
ID  - SEMR_2019_16_a108
ER  - 
%0 Journal Article
%A A. N. Artyushin
%T A boundary value problem for a 3rd order equation with a changing direction of evolution
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 2003-2012
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a108/
%G ru
%F SEMR_2019_16_a108
A. N. Artyushin. A boundary value problem for a 3rd order equation with a changing direction of evolution. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 2003-2012. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a108/

[1] G. D. Karatoprakliev, “On the theory of boundary value problems for mixed type equations in multidimensional domains. I”, Differ. Uravn., 13:1 (1977), 64–75 | MR | Zbl

[2] V. N. Vragov, “On the theory of boundary value problems for equations of mixed type in space”, Differ. Uravn., 13:6 (1977), 1098–1105 | MR | Zbl

[3] I. E. Egorov, V. E. Fedorov, Nonclassical high order equations of mathematical physics, "VC SO RAN", Novosibirsk, 1995 | MR

[4] A. I. Kozhanov, N. R. Pinigina, “Boundary-value problems for some higher-order nonclassical differential equations”, Math. Notes, 101:3 (2017), 467–474 | DOI | MR | Zbl

[5] I. E. Egorov, E. S. Efimova, I. M. Tikhonova, “On Fredholm solvability of first boundary value problem for mixed-type second-order equation with spectral parameter”, Matematicheskie Zametki SVFU, 25:1 (2018), 15–22 | Zbl

[6] I. E. Egorov, S. G. Pyatkov, S. V. Popov, Nonclassical operator-differential equations, “Nauka”, Novosibirsk, 2000 | MR | Zbl

[7] S. G. Pyatkov, “Boundary value problems for some classes of singular parabolic equations”, Siberian Adv. Math., 14:3 (2004), 63–125 | MR | Zbl

[8] A. N. Artyushin, “A Boundary value problem for a mixed type equation in a cylindrical domain”, Siberian Math. J., 60:2 (2019), 209–222 | DOI | MR | Zbl