Biharmonic Dirichlet--Farwig problem in exterior domains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1716-1731.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the unique solvability and the asymptotic behavior of solutions of the Dirichlet–Farwig biharmonic problem in the exterior of a compact set under the assumption that generalized solutions of this problem has a bounded Dirichlet integral with weight $|x|^a$. Depending on the value of the parameter $a$, we obtained uniqueness (non-uniqueness) theorems of the problem or present exact formulas for the dimension of the space of solutions of the mixed Dirichlet–Farwig problem.
Keywords: Biharmonic operator, Dirichlet–Farwig problem, wighted Dirichlet integral
Mots-clés : Sobolev spaces.
@article{SEMR_2019_16_a106,
     author = {H. A. Matevossian},
     title = {Biharmonic {Dirichlet--Farwig} problem in exterior domains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1716--1731},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a106/}
}
TY  - JOUR
AU  - H. A. Matevossian
TI  - Biharmonic Dirichlet--Farwig problem in exterior domains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1716
EP  - 1731
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a106/
LA  - ru
ID  - SEMR_2019_16_a106
ER  - 
%0 Journal Article
%A H. A. Matevossian
%T Biharmonic Dirichlet--Farwig problem in exterior domains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1716-1731
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a106/
%G ru
%F SEMR_2019_16_a106
H. A. Matevossian. Biharmonic Dirichlet--Farwig problem in exterior domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1716-1731. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a106/

[1] F. Cakoni, G.C. Hsiao, W.L. Wendland, “On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation”, Complex Variables, 50:7–11 (2005), 681–696 | MR | Zbl

[2] R. Farwig, “A note on the reflection principle for the biharmonic equation and the Stokes system”, Acta Appl. Math., 37 (1994), 41–51 | DOI | MR | Zbl

[3] G. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977 | MR | Zbl

[4] V. A. Kondratiev, O. A. Oleinik, “Estimates for solutions of the Dirichlet problem for biharmonic equation in a neighbourhood of an irregular boundary point and in a neighbourhood of infinity Saint-Venant's principle”, Proc. Royal Society Edinburgh, 93A (1983), 327–343 | DOI | MR | Zbl

[5] V. A. Kondratiev, O. A. Oleinik, “On the behavior at infinity of solutions of elliptic systems with a finite energy integral”, Arch. Rat. Mech. Anal., 99:1 (1987), 75–99 | DOI | MR | Zbl

[6] V. A. Kondrat'ev, O. A. Oleinik, “Boundary value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russ. Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl

[7] V. A. Kondratiev, O. A. Oleinik, “Hardy's and Korn's inequality and their application”, Rend. Mat. Appl., Serie VII, 10 (1990), 641–666 | MR | Zbl

[8] Russian Acad. Sci. Sb. Math., 80:2 (1995), 411–434 | MR | Zbl

[9] L. D. Kudryavtsev, “The solution of the first boundary-value problem for self-adjoint elliptic equations in the case of an unbounded region”, Math. USSR-Izv., 1:5 (1967), 1131–1151 | DOI

[10] O. A. Oleinik, V. A. Kondrat'ev, I. Kopachek, “On the asymptotic properties of solutions of the biharmonic equation”, Differ. Equations, 17:10 (1981), 1886–1899 | MR | Zbl

[11] O. A. Matevosyan, “On solutions of boundary value problems for a system in the theory of elasticity and for the biharmonic equation in a half-space”, Differ. Equations, 34:6 (1998), 803–808 | MR | Zbl

[12] O. A. Matevosyan, “The exterior Dirichlet problem for the biharmonic equation: solutions with bounded Dirichlet integral”, Math. Notes, 70:3 (2001), 363–377 | DOI | MR | Zbl

[13] O. A. Matevossian, “Solutions of exterior boundary-value problems for the elasticity system in weighted spaces”, Sb. Math., 192:12 (2001), 1763–1798 | DOI | MR | Zbl

[14] H. A. Matevossian, “On solutions of mixed boundary value problems for the elasticity system in unbounded domains”, Izvestiya Math., 67:5 (2003), 895–929 | DOI | MR | Zbl

[15] O. A. Matevosyan, “On solutions of a boundary value problem for the polyharmonic equation in unbounded domains”, Russ. J. Math. Phys., 21:1 (2014), 130–132 | DOI | MR | Zbl

[16] H. A. Matevossian, “On solutions of the Dirichlet problem for the polyharmonic equation in unbounded domains”, P-Adic Numbers, Ultrametric Analysis Appl., 7:1 (2015), 74–78 | MR

[17] O. A. Matevosyan, “Solution of a mixed boundary value problem for the biharmonic equation with finite weighted Dirichlet integral”, Differ. Equations, 51:4 (2015), 487–501 | DOI | MR | Zbl

[18] O. A. Matevossian, “On solutions of the Neumann problem for the biharmonic equation in unbounded domains”, Math. Notes, 98:6 (2015), 990–994 | DOI | MR | Zbl

[19] O. A. Matevosyan, “On solutions of the mixed Dirichlet-Navier problem for the polyharmonic equation in exterior domains”, Russ. J. Math. Phys., 23:1 (2016), 135–138 | DOI | MR | Zbl

[20] O. A. Matevosyan, “On solutions of one boundary value problem for the biharmonic equation”, Differ. Equations, 52:10 (2016), 1379–1383 | DOI | MR | Zbl

[21] H. A. Matevossian, “On the biharmonic Steklov problem in weighted spaces”, Russ. J. Math. Phys., 24:1 (2017), 134–138 | DOI | MR | Zbl

[22] Hovik A. Matevossian, “On solutions of the mixed Dirichlet–Steklov problem for the biharmonic equation in exterior domains”, p-Adic Numbers, Ultrametric Anal. Appl., 9:2 (2017), 151–157 | DOI | MR | Zbl

[23] H. A. Matevossian, “On the Steklov-type biharmonic problem in unbounded domains”, Russ. J. Math. Phys., 25:2 (2018), 271–276 | DOI | MR | Zbl

[24] Hovik A. Matevossian, “On the polyharmonic Neumann problem in weighted spaces”, Complex Variables Elliptic Equations, 64:1 (2019), 1–7 | DOI | MR | Zbl

[25] H. Matevossian, “On the Mixed Dirichlet-Steklov-Type and Steklov-Type Biharmonic Problems in Weighted Spaces”, Math. Comput. Appl., 24:1 (2019), 1–9 | MR

[26] H. Matevossian, “On the mixed Dirichlet-Farwig biharmonic problem in exterior domains”, J. Adv. Math., 16 (2019), 8322–8329 | DOI

[27] H. A. Matevossian, “Mixed Boundary Value Problems for the Elasticity System in Exterior Domains”, Math. Comput. Appl., 24:2 (2019), 1–7 | MR

[28] S. G. Mikhlin, Linear Partial Differential Equations, Vyssaya Shkola, M., 1977 (in Russian) | MR

[29] S. L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics, 3th ed., Nauka, M., 1988 ; Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc., Providence, 1991 | MR | MR | Zbl