Biharmonic Dirichlet--Farwig problem in exterior domains
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1716-1731

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the unique solvability and the asymptotic behavior of solutions of the Dirichlet–Farwig biharmonic problem in the exterior of a compact set under the assumption that generalized solutions of this problem has a bounded Dirichlet integral with weight $|x|^a$. Depending on the value of the parameter $a$, we obtained uniqueness (non-uniqueness) theorems of the problem or present exact formulas for the dimension of the space of solutions of the mixed Dirichlet–Farwig problem.
Keywords: Biharmonic operator, Dirichlet–Farwig problem, wighted Dirichlet integral
Mots-clés : Sobolev spaces.
@article{SEMR_2019_16_a106,
     author = {H. A. Matevossian},
     title = {Biharmonic {Dirichlet--Farwig} problem in exterior domains},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1716--1731},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a106/}
}
TY  - JOUR
AU  - H. A. Matevossian
TI  - Biharmonic Dirichlet--Farwig problem in exterior domains
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1716
EP  - 1731
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a106/
LA  - ru
ID  - SEMR_2019_16_a106
ER  - 
%0 Journal Article
%A H. A. Matevossian
%T Biharmonic Dirichlet--Farwig problem in exterior domains
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1716-1731
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a106/
%G ru
%F SEMR_2019_16_a106
H. A. Matevossian. Biharmonic Dirichlet--Farwig problem in exterior domains. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1716-1731. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a106/