Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1640-1653

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive algorithm is proposed for calculating the coefficients of the asymptotic expansion of a slow motions integral manifold represented in parametric form. The existence and uniqueness theorem is proven for a parametrized integral manifold of a singularly perturbed system in a degenerate case.
Keywords: asymptotic expansion, integral manifold, singularly perturbed system, slow motions.
@article{SEMR_2019_16_a104,
     author = {L. I. Kononenko},
     title = {Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1640--1653},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a104/}
}
TY  - JOUR
AU  - L. I. Kononenko
TI  - Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1640
EP  - 1653
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a104/
LA  - ru
ID  - SEMR_2019_16_a104
ER  - 
%0 Journal Article
%A L. I. Kononenko
%T Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1640-1653
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a104/
%G ru
%F SEMR_2019_16_a104
L. I. Kononenko. Parametrized integral manifolds of singularly perturbed systems in the critical case for problems of chemical kinetics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1640-1653. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a104/