Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2019_16_a103, author = {B. T. Kalimbetov and N. A. Pardaeva and L. D. Sharipova}, title = {Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1623--1632}, publisher = {mathdoc}, volume = {16}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a103/} }
TY - JOUR AU - B. T. Kalimbetov AU - N. A. Pardaeva AU - L. D. Sharipova TI - Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2019 SP - 1623 EP - 1632 VL - 16 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a103/ LA - en ID - SEMR_2019_16_a103 ER -
%0 Journal Article %A B. T. Kalimbetov %A N. A. Pardaeva %A L. D. Sharipova %T Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2019 %P 1623-1632 %V 16 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a103/ %G en %F SEMR_2019_16_a103
B. T. Kalimbetov; N. A. Pardaeva; L. D. Sharipova. Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1623-1632. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a103/
[1] S.A. Lomov, Introduction to General Theory of Singular Perturbations, Translations of Mathematical Monographs, 112, American Mathematical Society, Providence, USA, 1992 | DOI | MR | Zbl
[2] B.T. Kalimbetov, V.F. Safonov, “A regularization method for systems with unstable spectral value of the kernel of the integral operator”, Differential Equations, 31:4 (1995), 647–656 | MR | Zbl
[3] B.T. Kalimbetov, M.A. Temirbekov, Zh.O. Habibullaev, “Asymptotic solution of singular perturbed problems with an instable spectrum of the limiting operator”, Abstract and Applied Analysis, 2012, 120192 | MR | Zbl
[4] B.I. Yeskarayeva, B.T. Kalimbetov, M.A. Temirbekov, “Mathematical description of the internal boundary layer for nonlinear integro-differential system”, Bulletin of the Karaganda SU, 75:3 (2014), 77–87
[5] N.S. Imanbaev, B.T. Kalimbetov, D.A. Sapakov, L.T. Tashimov, “Regularized asymptotical solutions of integro-differential systems with spectral singularites”, Advances in Difference Equations, 109 (2013) | DOI | MR | Zbl
[6] B.I. Yeskarayeva, B.T. Kalimbetov, M.A. Temirbekov, “Discrete boundary layer for systems of integro-differential equations with zero points of spectrum”, Bulletin of the Karaganda SU, 75:3 (2014), 88–95
[7] B.I. Yeskarayeva, B.T. Kalimbetov, A.S. Tolep, “Internal boundary layer for integral-differential equations with zero spectrum of the limit operator and rapidly changing kernel”, Applied Mathematical Sciences, 141–144:9 (2015), 7149–7165 | DOI
[8] A.A. Bobodzhanov, V.F. Safonov, “Regularized asymptotic solutions of the initial problem of systems of integro-partial differential equations”, Mathematical Notes, 102:1 (2017), 22–30 | DOI | MR | Zbl
[9] A.A. Bobodzhanov, V.F. Safonov, “Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufimsk. Mat. Zh., 10:2 (2018), 3–12 | DOI | MR
[10] A.A. Bobodzhanov, V.F. Safonov, Course of higher mathematics. Singularly perturbed equations and the regularization method, textbook, Izdatelstvo MEI, M., 2012