Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1623-1632.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, ideas of the Lomov regularization method are generalized to the Cauchy problem for a singularly perturbed partial integro-differential equation in the case when the integral term contains a rapidly varying kernel. Regularization of the problem is carried out, the normal and unique solvability of general iterative problems is proved.
Keywords: singularly perturbed, partial integro differential equation, regularization of an integral, solvability of iterative problems.
@article{SEMR_2019_16_a103,
     author = {B. T. Kalimbetov and N. A. Pardaeva and L. D. Sharipova},
     title = {Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1623--1632},
     publisher = {mathdoc},
     volume = {16},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2019_16_a103/}
}
TY  - JOUR
AU  - B. T. Kalimbetov
AU  - N. A. Pardaeva
AU  - L. D. Sharipova
TI  - Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2019
SP  - 1623
EP  - 1632
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2019_16_a103/
LA  - en
ID  - SEMR_2019_16_a103
ER  - 
%0 Journal Article
%A B. T. Kalimbetov
%A N. A. Pardaeva
%A L. D. Sharipova
%T Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2019
%P 1623-1632
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2019_16_a103/
%G en
%F SEMR_2019_16_a103
B. T. Kalimbetov; N. A. Pardaeva; L. D. Sharipova. Asymptotic solutions of integro-differential equations with partial derivatives and with rapidly varying kernel. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 16 (2019), pp. 1623-1632. http://geodesic.mathdoc.fr/item/SEMR_2019_16_a103/

[1] S.A. Lomov, Introduction to General Theory of Singular Perturbations, Translations of Mathematical Monographs, 112, American Mathematical Society, Providence, USA, 1992 | DOI | MR | Zbl

[2] B.T. Kalimbetov, V.F. Safonov, “A regularization method for systems with unstable spectral value of the kernel of the integral operator”, Differential Equations, 31:4 (1995), 647–656 | MR | Zbl

[3] B.T. Kalimbetov, M.A. Temirbekov, Zh.O. Habibullaev, “Asymptotic solution of singular perturbed problems with an instable spectrum of the limiting operator”, Abstract and Applied Analysis, 2012, 120192 | MR | Zbl

[4] B.I. Yeskarayeva, B.T. Kalimbetov, M.A. Temirbekov, “Mathematical description of the internal boundary layer for nonlinear integro-differential system”, Bulletin of the Karaganda SU, 75:3 (2014), 77–87

[5] N.S. Imanbaev, B.T. Kalimbetov, D.A. Sapakov, L.T. Tashimov, “Regularized asymptotical solutions of integro-differential systems with spectral singularites”, Advances in Difference Equations, 109 (2013) | DOI | MR | Zbl

[6] B.I. Yeskarayeva, B.T. Kalimbetov, M.A. Temirbekov, “Discrete boundary layer for systems of integro-differential equations with zero points of spectrum”, Bulletin of the Karaganda SU, 75:3 (2014), 88–95

[7] B.I. Yeskarayeva, B.T. Kalimbetov, A.S. Tolep, “Internal boundary layer for integral-differential equations with zero spectrum of the limit operator and rapidly changing kernel”, Applied Mathematical Sciences, 141–144:9 (2015), 7149–7165 | DOI

[8] A.A. Bobodzhanov, V.F. Safonov, “Regularized asymptotic solutions of the initial problem of systems of integro-partial differential equations”, Mathematical Notes, 102:1 (2017), 22–30 | DOI | MR | Zbl

[9] A.A. Bobodzhanov, V.F. Safonov, “Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufimsk. Mat. Zh., 10:2 (2018), 3–12 | DOI | MR

[10] A.A. Bobodzhanov, V.F. Safonov, Course of higher mathematics. Singularly perturbed equations and the regularization method, textbook, Izdatelstvo MEI, M., 2012