Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a92, author = {M. G. Mazhgikhova}, title = {Boundary value problems for a linear ordinary differential equation of fractional order with delay}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {685--695}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a92/} }
TY - JOUR AU - M. G. Mazhgikhova TI - Boundary value problems for a linear ordinary differential equation of fractional order with delay JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 685 EP - 695 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a92/ LA - ru ID - SEMR_2018_15_a92 ER -
%0 Journal Article %A M. G. Mazhgikhova %T Boundary value problems for a linear ordinary differential equation of fractional order with delay %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 685-695 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a92/ %G ru %F SEMR_2018_15_a92
M. G. Mazhgikhova. Boundary value problems for a linear ordinary differential equation of fractional order with delay. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 685-695. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a92/
[1] A.V. Pskhu, Partial differential equations of fractional order, Nauka, M., 2005 (Russian) | MR | Zbl
[2] J.H. Barrett, “Differential equation of non-integer order”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl
[3] M.M. Dzhrbashyan, A.B. Nersesyan, “Fractional derivatives and the Cauchy problem for differential equations of fractional order”, Izv. Akad. Nauk Armenian SSR Matem., 3:1 (1968), 3–-29 (Russian) | MR | Zbl
[4] M.M. Dzhrbashyan, “Boundary problem for fractional differential operator of Sturm-Liouville type”, Izv. Akad. Nauk Armenian SSR Matem., 5:2 (1970), 71–96 (Russian) | Zbl
[5] A.V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order”, Sb. Mathematics, 202:4 (2011), 571–-582 | DOI | MR | Zbl
[6] L.Kh. Gadzova, “Dirichlet and Neumann problems for a fractional ordinary differential equation with constant coefficients”, Differential Equations, 51:12 (2015), 1556–1562 | DOI | MR | Zbl
[7] S.B. Norkin, “About the solutions of a linear homogeneous second order differential equation with delay”, Uspekhi matem. nauk, 14:1(85) (1959), 199–206 (Russian) | MR | Zbl
[8] M.G. Mazhgikhova, “Initial and boundary value problem for ordinary differential equation of fractional order with delay”, Chelyabinsk Phisical and Mathematical Journal, 3:1 (2018), 27–37 (Russian)
[9] M.G. Mazhgikhova, “Dirichlet problem for ordinary differential equation of fractional order with delay”, Differential Equations, 54:2 (2015), 187–194 (Russian)
[10] M.G. Mazhgikhova, “Cauchy problem for ordinary differential equation with Riemann-Liouville derivative with delay”, News of kabardino-balkarian scientific center of the russian academy of sciences, 1:75 (2017), 24–28 (Russian)
[11] T.R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl
[12] A.K. Shukla, J.C. Prajapati, “On a generalization of Mittag-Leffler function and its properties”, J. Math. Anal. Appl., 336:2 (2007), 797–811 | DOI | MR | Zbl
[13] E.M. Wright, “The asymptotic expansion of the generalized hypergeometric function”, J. London Math. Soc., 10 (1935), 286–293 | DOI | MR | Zbl
[14] E.M. Wright, “The asymptotic expansion of the generalized hypergeometric function”, Proc. London Math. Soc., II Ser., 46 (1940), 389–408 | DOI | MR | Zbl