Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a84, author = {D. A. Juraev}, title = {On the {Cauchy} problem for matrix factorizations of the {Helmholtz} equation in a bounded domain}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {11--20}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a84/} }
TY - JOUR AU - D. A. Juraev TI - On the Cauchy problem for matrix factorizations of the Helmholtz equation in a bounded domain JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 11 EP - 20 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a84/ LA - ru ID - SEMR_2018_15_a84 ER -
D. A. Juraev. On the Cauchy problem for matrix factorizations of the Helmholtz equation in a bounded domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 11-20. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a84/
[1] Tarkhanov N. N., “Ob integralnom predstavlenii resheniy sistem lineynykh differensialnyx uravneniy 1-go poryadka v chastnykh proizvodnykh i nekotoryx yego prilojeniyakh”, Nekotorye voprosy mnogomernogo kompleksnogo analiza, Institut fiziki AN SSSR, Krasnoyarsk, 1980, 147–160 | MR
[2] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl
[3] Tarkhanov N. N., The Cauchy problem for solutions of elliptic equations, Mathematical Topics, 7, Akad. Verl., Berlin, 1995 | MR | Zbl
[4] Carleman T., Les fonctions quasi analytiques, Gautier-Villars et Cie, Paris, 1926 | Zbl
[5] Lavrent'ev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoy fiziki, Nauka, Novosibirsk, 1962 | MR
[6] Yarmukhamedov Sh., “Funksiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sib. mat. zhurnal, 45:3 (2004), 702–719 | MR | Zbl
[7] Djrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsiy v kompleksnoy oblasti, Nauka, M., 1966
[8] Aizenberg L. A., Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR
[9] Goluzin G. M., Krylov V. M., “Obobshennaya formula Karlemana i yeyo prilozheniye k analiticheskomu prodolzheniyu funksiy”, Mat. sb., 40:2 (1993), 144–149
[10] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl
[11] Bers A., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl
[12] Aleksidze M. A., Fundamentalnye funksii v priblizhennykh resheniyakh granichnykh zadach, Nauka, M., 1991 | MR
[13] Arbuzov E. V., Bukhgeim A. L., “Formula Karlemana dlya uravneniya Gelmgoltsa”, Sib. mat. zhurnal, 47:3 (2006), 518–526 | MR | Zbl
[14] Makhmudov O. I., Niyozov I. E., “O zadache Koshi dlya mnogomernoy sistemy uravneniy Lame”, Izv. vuzov. Matem., 4 (2006), 41–50 | MR | Zbl
[15] Ishankulov T., “Prodoljeniye resheniye sistemy uravneniy Moisila-Teodoresko”, Uzbekskii Matematicheskii zhurnal, 3 (2007), 46–52 | MR | Zbl
[16] Sattorov E. N., “O prodoljenii resheniya odnorodnoy sistemy uravneniy Maksvella”, Izv. vuzov. Matem., 2008, no. 8, 78–83 | MR
[17] Juraev D. A., “Integralnaya formula dlya sistem uravneniy ellipticheskogo tipa”, II Mezhdunarodnaya nauchno-prakticheskaya konferentsiya studentov i aspirantov «Matematika i yeyo prilozheniya v sovremennoy nauke i praktike» (Kursk, 2012), 33–38
[18] Juraev D. A., “Integralnaya formula dlya sistem uravneniy ellipticheskogo tipa v ogranichennoy oblasti”, Aktualnye problemy mexaniki, matematiki, informatiki — 2012, Mezhdunarodnaya konferentsiya posvyashyennoy 100-letiyu so dnya rozhdeniya professorov S. N. Chernikova, I. F. Vereshagina, L. I. Volkovysskogo (Perm, 2012), 43 | MR | Zbl
[19] Juraev D. A., “Konstruktsiya fundamentalnogo resheniya uravneniya Gelmgoltsa”, Doklady Akademii nauk Respubliki Uzbekistan, 4 (2012), 14–17
[20] Juraev D. A., “Regulyarizatsiya zadacha Koshi dlya sistem uravneniy ellipticheskogo tipa pervogo poryadka”, Uzbekskiy Matematicheskiy zhurnal, 2 (2016), 61–71
[21] Juraev D. A., “Zadacha Koshi dlya matrichnykh faktorizatsiy uravneniya Gelmgoltsa v neogranichennoy oblasti”, Sib. Elektron. Matem. Izv., 14 (2017), 752–764 | Zbl