On the Cauchy problem for matrix factorizations of the Helmholtz equation in a bounded domain
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 11-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is considered the problem of regularization of the Cauchy problem for systems of elliptic type equations of the first order with constant coefficients factorisable Helmholtz operator in three-dimensional bounded domain. Using the results of [1–6], is constructed explicitly Carleman matrix and, based on the regularized solution of the Cauchy problem.
Keywords: The Cauchy problem, regularization, factorization, regular solution, fundamental solution.
@article{SEMR_2018_15_a84,
     author = {D. A. Juraev},
     title = {On the {Cauchy} problem for matrix factorizations of the {Helmholtz} equation in a bounded domain},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {11--20},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a84/}
}
TY  - JOUR
AU  - D. A. Juraev
TI  - On the Cauchy problem for matrix factorizations of the Helmholtz equation in a bounded domain
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 11
EP  - 20
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a84/
LA  - ru
ID  - SEMR_2018_15_a84
ER  - 
%0 Journal Article
%A D. A. Juraev
%T On the Cauchy problem for matrix factorizations of the Helmholtz equation in a bounded domain
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 11-20
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a84/
%G ru
%F SEMR_2018_15_a84
D. A. Juraev. On the Cauchy problem for matrix factorizations of the Helmholtz equation in a bounded domain. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 11-20. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a84/

[1] Tarkhanov N. N., “Ob integralnom predstavlenii resheniy sistem lineynykh differensialnyx uravneniy 1-go poryadka v chastnykh proizvodnykh i nekotoryx yego prilojeniyakh”, Nekotorye voprosy mnogomernogo kompleksnogo analiza, Institut fiziki AN SSSR, Krasnoyarsk, 1980, 147–160 | MR

[2] Tarkhanov N. N., “O matritse Karlemana dlya ellipticheskikh sistem”, DAN SSSR, 284:2 (1985), 294–297 | MR | Zbl

[3] Tarkhanov N. N., The Cauchy problem for solutions of elliptic equations, Mathematical Topics, 7, Akad. Verl., Berlin, 1995 | MR | Zbl

[4] Carleman T., Les fonctions quasi analytiques, Gautier-Villars et Cie, Paris, 1926 | Zbl

[5] Lavrent'ev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoy fiziki, Nauka, Novosibirsk, 1962 | MR

[6] Yarmukhamedov Sh., “Funksiya Karlemana i zadacha Koshi dlya uravneniya Laplasa”, Sib. mat. zhurnal, 45:3 (2004), 702–719 | MR | Zbl

[7] Djrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsiy v kompleksnoy oblasti, Nauka, M., 1966

[8] Aizenberg L. A., Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR

[9] Goluzin G. M., Krylov V. M., “Obobshennaya formula Karlemana i yeyo prilozheniye k analiticheskomu prodolzheniyu funksiy”, Mat. sb., 40:2 (1993), 144–149

[10] Tikhonov A. N., “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Dokl. AN SSSR, 151:3 (1963), 501–504 | MR | Zbl

[11] Bers A., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl

[12] Aleksidze M. A., Fundamentalnye funksii v priblizhennykh resheniyakh granichnykh zadach, Nauka, M., 1991 | MR

[13] Arbuzov E. V., Bukhgeim A. L., “Formula Karlemana dlya uravneniya Gelmgoltsa”, Sib. mat. zhurnal, 47:3 (2006), 518–526 | MR | Zbl

[14] Makhmudov O. I., Niyozov I. E., “O zadache Koshi dlya mnogomernoy sistemy uravneniy Lame”, Izv. vuzov. Matem., 4 (2006), 41–50 | MR | Zbl

[15] Ishankulov T., “Prodoljeniye resheniye sistemy uravneniy Moisila-Teodoresko”, Uzbekskii Matematicheskii zhurnal, 3 (2007), 46–52 | MR | Zbl

[16] Sattorov E. N., “O prodoljenii resheniya odnorodnoy sistemy uravneniy Maksvella”, Izv. vuzov. Matem., 2008, no. 8, 78–83 | MR

[17] Juraev D. A., “Integralnaya formula dlya sistem uravneniy ellipticheskogo tipa”, II Mezhdunarodnaya nauchno-prakticheskaya konferentsiya studentov i aspirantov «Matematika i yeyo prilozheniya v sovremennoy nauke i praktike» (Kursk, 2012), 33–38

[18] Juraev D. A., “Integralnaya formula dlya sistem uravneniy ellipticheskogo tipa v ogranichennoy oblasti”, Aktualnye problemy mexaniki, matematiki, informatiki — 2012, Mezhdunarodnaya konferentsiya posvyashyennoy 100-letiyu so dnya rozhdeniya professorov S. N. Chernikova, I. F. Vereshagina, L. I. Volkovysskogo (Perm, 2012), 43 | MR | Zbl

[19] Juraev D. A., “Konstruktsiya fundamentalnogo resheniya uravneniya Gelmgoltsa”, Doklady Akademii nauk Respubliki Uzbekistan, 4 (2012), 14–17

[20] Juraev D. A., “Regulyarizatsiya zadacha Koshi dlya sistem uravneniy ellipticheskogo tipa pervogo poryadka”, Uzbekskiy Matematicheskiy zhurnal, 2 (2016), 61–71

[21] Juraev D. A., “Zadacha Koshi dlya matrichnykh faktorizatsiy uravneniya Gelmgoltsa v neogranichennoy oblasti”, Sib. Elektron. Matem. Izv., 14 (2017), 752–764 | Zbl