MMS-type problems for Johnson scheme
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1663-1670.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the current work we consider the minimization problems for the number of nonzero or negative values of vectors from the first and second eigenspaces of the Johnson scheme respectively. The topic is a meeting point for generalizations of the Manikam-Miklós-Singhi conjecture and the minimum support problem for the eigenspaces of the Johnson graph, asymptotically solved in [16].
Keywords: Johnson scheme, Eberlein polynomials.
Mots-clés : eigenspace, equitable partition, MMS-conjecture
@article{SEMR_2018_15_a82,
     author = {I. Yu. Mogilnykh and K. V. Vorob'ev and A. A. Valyuzhenich},
     title = {MMS-type problems for {Johnson} scheme},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1663--1670},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a82/}
}
TY  - JOUR
AU  - I. Yu. Mogilnykh
AU  - K. V. Vorob'ev
AU  - A. A. Valyuzhenich
TI  - MMS-type problems for Johnson scheme
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1663
EP  - 1670
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a82/
LA  - en
ID  - SEMR_2018_15_a82
ER  - 
%0 Journal Article
%A I. Yu. Mogilnykh
%A K. V. Vorob'ev
%A A. A. Valyuzhenich
%T MMS-type problems for Johnson scheme
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1663-1670
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a82/
%G en
%F SEMR_2018_15_a82
I. Yu. Mogilnykh; K. V. Vorob'ev; A. A. Valyuzhenich. MMS-type problems for Johnson scheme. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1663-1670. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a82/

[1] N. Alon, H. Huang, B. Sudakov, “Nonnegative k-sums, fractional covers, and probability of small deviations”, Journal of Combinatorial Theory, Series B, 102:3 (2012), 784–796 | DOI | MR | Zbl

[2] S.V. Avgustinovich, I.Yu. Mogil'nykh, “Perfect colorings of the Johnson graphs J(8,3) and J(8,4) with two colors”, Journal of Applied and Industrial Mathematics, 5:1 (2011), 19–30. DOI 10.1134/S1990478911010030, translated from Diskretnyi Analiz i Issledovanie Operatsii | DOI | MR

[3] T. Bier, “A distribution invariant for association schemes and strongly regular graphs”, Linear Algebra and its Applications, 57 (1984), 105–113 | DOI | MR | Zbl

[4] T. Bier, P. Delsarte, “Some bounds for the distribution numbers of an association scheme”, European Journal of Combinatorics, 9:1 (1988), 1–5 | DOI | MR | Zbl

[5] T. Bier, “Some distribution numbers of the triangular association scheme”, European Journal of Combinatorics, 9:1 (1988), 19–22 | DOI | MR | Zbl

[6] A.E. Brouwer, A.M. Cohen, A. Neumaier, “Distance-regular graphs”, Results in Mathematics and Related Areas (3), Springer-Verlag, Berlin, 1989 | MR | Zbl

[7] D.M. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs, Academic Press, New York–London, 1980 | MR

[8] P. Delsarte, “An Algebraic Approach to the Association Schemes of Coding Theory”, Philips Res. Rep. Suppl., 1973, no. 10 | MR

[9] A.L. Gavrilyuk, S.V. Goryainov, “On perfect 2-colorings of Johnson graphs J(v,3)”, Journal of Combinatorial Designs, 21:6 (2013), 232–252 | DOI | MR | Zbl

[10] C. Godsil, C. Praeger, Completely transitive designs, , 2014 1405.2176 [math.CO]

[11] D.S. Krotov, I.Yu. Mogilnykh, V.N. Potapov, “To the theory of q-ary Steiner and other-type trades”, Discrete Mathematics, 339:3 (2016), 1150–1157 | DOI | MR | Zbl

[12] N. Manickam, D. Miklós, “On the number of non-negative partial sums of a non-negative sum”, Proc. 7th Hung. Colloq. (Eger/Hung. 1987), Colloq. Math. Soc. János Bolyai, 52, 1988, 385–392 | MR | Zbl

[13] N. Manickam, N. M. Singhi, “First distribution invariants and EKR theorems”, Journal of Combinatorial Theory, Series A, 48:1 (1988), 91–103 | DOI | MR

[14] W.J. Martin, “Completely regular designs of strength one”, Journal of Algebraic Combinatorics, 3:2 (1994), 177–185 | DOI | MR | Zbl

[15] A. Pokrovskiy, “A linear bound on the Manickam-Miklós-Singhi conjecture”, Journal of Combinatorial Theory, Series A, 133 (2015), 280–306 | DOI | MR | Zbl

[16] K. Vorob'ev, I. Mogilnykh, A. Valyuzhenich, “Minimum supports of eigenfunctions of Johnson graphs”, Discrete Mathematics, 341:8 (2018), 2151–2158 | DOI | MR | Zbl