Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a81, author = {I. N. Belousov and A. A. Makhnev}, title = {Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1506--1512}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a81/} }
TY - JOUR AU - I. N. Belousov AU - A. A. Makhnev TI - Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 1506 EP - 1512 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a81/ LA - ru ID - SEMR_2018_15_a81 ER -
%0 Journal Article %A I. N. Belousov %A A. A. Makhnev %T Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 1506-1512 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a81/ %G ru %F SEMR_2018_15_a81
I. N. Belousov; A. A. Makhnev. Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1506-1512. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a81/
[1] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR
[2] N.D. Zyulyarkina, A.A. Makhnev, “On automorphisms of distance-regular graph with intersection array $\{15,12,6;1,2,10\}$”, Doklady Mathematics, 84:1 (2011), 510–514 | DOI | MR
[3] A.E. Brouwer, S. Sumalroj, C. Worawannotai, “The nonexistence of distance-regular graphs with intersection array $\{27,20,10;1,2,18\}$ and $\{36,28,4;1,2,24\}$”, Australasian Journal of Combinatorics, 66:2 (2016), 330–332 | MR
[4] A.L. Gavrilyuk, A.A. Makhnev, “Automorphisms of graphs with intersection arrays $\{60,45,8;1,12,50\}$ and $\{49,36,8;1,6,42\}$”, Mathematical Zametki, 101:6 (2017), 823–831 | DOI | MR
[5] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr, 65 (2012), 29–47 | DOI | MR