Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1506-1512.

Voir la notice de l'article provenant de la source Math-Net.Ru

Koolen and Park obtained the list of intersection arrays for Shilla graphs with $b=3$. In particular distance-regular graph with intersectuion array $\{42,30,12;1,6,28\}$ is Shilla graphs with $b=3$. Gavrilyuk and Makhnev investigated properties of a graph with intersectuion array $\{60,45,8;1,12,50\}$. We proved that distance-regular graphs with intersectuion arrays $\{42, 30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist.
Keywords: distance-regular graph, Shilla graph, triple intersection numbers.
@article{SEMR_2018_15_a81,
     author = {I. N. Belousov and A. A. Makhnev},
     title = {Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1506--1512},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a81/}
}
TY  - JOUR
AU  - I. N. Belousov
AU  - A. A. Makhnev
TI  - Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1506
EP  - 1512
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a81/
LA  - ru
ID  - SEMR_2018_15_a81
ER  - 
%0 Journal Article
%A I. N. Belousov
%A A. A. Makhnev
%T Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1506-1512
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a81/
%G ru
%F SEMR_2018_15_a81
I. N. Belousov; A. A. Makhnev. Distance-regular graphs with intersectuion arrays $\{42,30,12;1,6,28\}$ and $\{60,45,8;1,12,50\}$ do not exist. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1506-1512. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a81/

[1] J.H. Koolen, J. Park, “Shilla distance-regular graphs”, Europ. J. Comb., 31:8 (2010), 2064–2073 | DOI | MR

[2] N.D. Zyulyarkina, A.A. Makhnev, “On automorphisms of distance-regular graph with intersection array $\{15,12,6;1,2,10\}$”, Doklady Mathematics, 84:1 (2011), 510–514 | DOI | MR

[3] A.E. Brouwer, S. Sumalroj, C. Worawannotai, “The nonexistence of distance-regular graphs with intersection array $\{27,20,10;1,2,18\}$ and $\{36,28,4;1,2,24\}$”, Australasian Journal of Combinatorics, 66:2 (2016), 330–332 | MR

[4] A.L. Gavrilyuk, A.A. Makhnev, “Automorphisms of graphs with intersection arrays $\{60,45,8;1,12,50\}$ and $\{49,36,8;1,6,42\}$”, Mathematical Zametki, 101:6 (2017), 823–831 | DOI | MR

[5] A. Jurisic, J. Vidali, “Extremal 1-codes in distance-regular graphs of diameter 3”, Des. Codes Cryptogr, 65 (2012), 29–47 | DOI | MR