On ordered groups of Morley o-rank 1
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 314-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a cut $s$ in an ordered structure $\mathcal{M}$ we can define a localization of Morley rank—Morley o-rank, replacing each formula in definition of Morley rank with the following partial types: the cut $s$ extended with this formula. We prove in the paper that any ordered group of Morley o-rank 1 with boundedly many definable convex subgroups is weakly o-minimal and construct an example of an ordered group of Morley o-rank 1 and Morley o-degree at most 4.
Keywords: ordered group, weak o-minimality, o-stability, rank.
@article{SEMR_2018_15_a8,
     author = {V. V. Verbovskiy},
     title = {On ordered groups of {Morley} o-rank 1},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {314--320},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a8/}
}
TY  - JOUR
AU  - V. V. Verbovskiy
TI  - On ordered groups of Morley o-rank 1
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 314
EP  - 320
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a8/
LA  - en
ID  - SEMR_2018_15_a8
ER  - 
%0 Journal Article
%A V. V. Verbovskiy
%T On ordered groups of Morley o-rank 1
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 314-320
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a8/
%G en
%F SEMR_2018_15_a8
V. V. Verbovskiy. On ordered groups of Morley o-rank 1. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 314-320. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a8/

[1] B. Baizhanov, V. Verbovskiy, “O-stable theories”, Algebra and Logic, 50:3 (2011), 211–225 | DOI | MR | Zbl

[2] B. Kulpeshov, “Weakly o-minimal structures and some of their properties”, J. Symbolic Logic, 63:4 (1998), 1511–1527 | DOI | MR | Zbl

[3] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Amer. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[4] A. Pillay, Ch. Steinhorn, “Definable sets in ordered structures. 1”, Trans. Amer. Math. Soc., 352 (1986), 565–592 | DOI | MR | Zbl

[5] Verbovskiy V., “Non-uniformly weakly o-minimal group”, Algebra and Model theory 3, Collection of papers, eds. A. G. Pinus, K. N. Ponomaryov, Novosibirsk, 2001, 136–145 | MR | Zbl

[6] V. Verbovskiy, “O-stable ordered groups”, Siberian Advances in Mathemtics, 22:1 (2012), 60–74 | MR