On new examples of hypocritical groups
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 305-313
Cet article a éte moissonné depuis la source Math-Net.Ru
A group $ G $ is called hypocritical if whenever $ G $ lies in a locally finite variety generated by a section closed class of groups $ \mathfrak{X} $, then $ G $ belongs to $ \mathfrak{X} $. We prove that some coprime extensions of a $ p $-group are hypocritical. The first example is given when such a $ p $-group is nonabelian.
Keywords:
locally finite varieties, finite groups, extraspecial $ p $-groups.
@article{SEMR_2018_15_a7,
author = {S. V. Skresanov},
title = {On new examples of hypocritical groups},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {305--313},
year = {2018},
volume = {15},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a7/}
}
S. V. Skresanov. On new examples of hypocritical groups. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 305-313. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a7/
[1] L.F. Harris, “Hypocritical and sincere groups”, Proc. Second Internat. Conf. Theory of Groups, 372 (1973), 333–336 | DOI | MR
[2] L.G. Kovács, M.F. Newman, “Minimal verbal subgroups”, Proc. Camb. Phil. Soc., 62 (1966), 347–350 | DOI | MR
[3] D. Gorenstein, Finite groups, 2nd edition, Chelsea Publishing Co., New York, 1980 | MR
[4] V. D. Mazurov, E. I. Khukhro (eds.), Unsolved problems in group theory. The Kourovka Notebook, 18th edn., Sobolev Institute of Mathematics, Novosibirsk, 2014 | MR
[5] A.V. Vasil'ev, S.V. Skresanov, “On L.G. Kovàcs' problem”, Algebra and Logic, 55:4 (2016), 512–518 | MR
[6] G. Higman, “Some remarks on varieties of groups”, Quart. J. Math. Oxford Ser., 10 (1959), 165–178 | DOI | MR