Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a69, author = {I. N. Belousov}, title = {Automorphisms of {Shilla} graph with intersection array $\{115,96,16;1,8,92\}$}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {733--740}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a69/} }
TY - JOUR AU - I. N. Belousov TI - Automorphisms of Shilla graph with intersection array $\{115,96,16;1,8,92\}$ JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 733 EP - 740 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a69/ LA - ru ID - SEMR_2018_15_a69 ER -
I. N. Belousov. Automorphisms of Shilla graph with intersection array $\{115,96,16;1,8,92\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 733-740. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a69/
[1] A.A. Makhnev, D.V. Paduchikh, “On strongly regular graphs with eigenvalue $\mu$ and their extensions”, Proceedings of the Steklov Institute of Mathematics, 285 (2014), 128–135 | DOI | MR
[2] P.J. Cameron, Graphs, Permutation Groups, Cambridge Univ. Press, Cambridge, 1999 | MR
[3] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl
[4] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl
[5] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl