Automorphisms of Shilla graph with intersection array $\{115,96,16;1,8,92\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 733-740.

Voir la notice de l'article provenant de la source Math-Net.Ru

Automorphisms of a hypothetical distance-regular graph with intersection array $\{115,96,16;1,8,92\}$ are described. It is proved that a distance-regular graph with this intersection array is not vertex-transitive.
Mots-clés : automorphism
Keywords: distance-regular graph.
@article{SEMR_2018_15_a69,
     author = {I. N. Belousov},
     title = {Automorphisms of {Shilla} graph with intersection array $\{115,96,16;1,8,92\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {733--740},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a69/}
}
TY  - JOUR
AU  - I. N. Belousov
TI  - Automorphisms of Shilla graph with intersection array $\{115,96,16;1,8,92\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 733
EP  - 740
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a69/
LA  - ru
ID  - SEMR_2018_15_a69
ER  - 
%0 Journal Article
%A I. N. Belousov
%T Automorphisms of Shilla graph with intersection array $\{115,96,16;1,8,92\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 733-740
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a69/
%G ru
%F SEMR_2018_15_a69
I. N. Belousov. Automorphisms of Shilla graph with intersection array $\{115,96,16;1,8,92\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 733-740. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a69/

[1] A.A. Makhnev, D.V. Paduchikh, “On strongly regular graphs with eigenvalue $\mu$ and their extensions”, Proceedings of the Steklov Institute of Mathematics, 285 (2014), 128–135 | DOI | MR

[2] P.J. Cameron, Graphs, Permutation Groups, Cambridge Univ. Press, Cambridge, 1999 | MR

[3] A. E. Brouwer, W. H. Haemers, “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14 (1993), 397–407 | DOI | MR | Zbl

[4] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR | Zbl

[5] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR | Zbl