Irreducible triangulations of the once-punctured torus
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 277-304

Voir la notice de l'article provenant de la source Math-Net.Ru

A triangulation of a surface with fixed topological type is called irreducible if no edge can be contracted to a vertex while remaining in the category of simplicial complexes and preserving the topology of the surface. A complete list of combinatorial structures of irreducible triangulations is made by hand for the once-punctured torus, consisting of exactly 297 non-isomorphic triangulations.
Keywords: triangulation of 2-manifold, irreducible triangulation, 2-manifold with boundary, punctured torus.
@article{SEMR_2018_15_a65,
     author = {S. Lawrencenko and T. Sulanke and M. T. Villar and L. V. Zgonnik and M. J. Ch\'avez and J. R. Portillo},
     title = {Irreducible triangulations of the once-punctured torus},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {277--304},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a65/}
}
TY  - JOUR
AU  - S. Lawrencenko
AU  - T. Sulanke
AU  - M. T. Villar
AU  - L. V. Zgonnik
AU  - M. J. Chávez
AU  - J. R. Portillo
TI  - Irreducible triangulations of the once-punctured torus
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 277
EP  - 304
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a65/
LA  - en
ID  - SEMR_2018_15_a65
ER  - 
%0 Journal Article
%A S. Lawrencenko
%A T. Sulanke
%A M. T. Villar
%A L. V. Zgonnik
%A M. J. Chávez
%A J. R. Portillo
%T Irreducible triangulations of the once-punctured torus
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 277-304
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a65/
%G en
%F SEMR_2018_15_a65
S. Lawrencenko; T. Sulanke; M. T. Villar; L. V. Zgonnik; M. J. Chávez; J. R. Portillo. Irreducible triangulations of the once-punctured torus. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 277-304. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a65/