Mots-clés : automorphism.
@article{SEMR_2018_15_a61,
author = {M. M. Isakova and A. A. Makhnev},
title = {On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$},
journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
pages = {198--204},
year = {2018},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a61/}
}
TY - JOUR
AU - M. M. Isakova
AU - A. A. Makhnev
TI - On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$
JO - Sibirskie èlektronnye matematičeskie izvestiâ
PY - 2018
SP - 198
EP - 204
VL - 15
UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a61/
LA - ru
ID - SEMR_2018_15_a61
ER -
%0 Journal Article
%A M. M. Isakova
%A A. A. Makhnev
%T On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 198-204
%V 15
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a61/
%G ru
%F SEMR_2018_15_a61
M. M. Isakova; A. A. Makhnev. On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 198-204. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a61/
[1] A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989 | MR
[2] A. A. Makhnev, M. S. Nirova, “On automorphisms of graph with intersection array $\{69,56,10;1,14,60\}$”, Trudy IMM UrO RAN, 23, 2017, 182–190 | DOI | MR
[3] M. Behbahani, C. Lam, “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl
[4] P.J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR
[5] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 3 (2010), 439–442 | DOI | MR
[6] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sibirean electr. Math. Reports, 6 (2009), 1–12 | MR