On automorphisms of a distance-regular graph with intersection array $\{119,100,15;1,20,105\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 198-204

Voir la notice de l'article provenant de la source Math-Net.Ru

We study automorphisms of a hypothetical distance-regular graph with intersection array $\{119,100,15;1,20,105\}$. It is proved that a vertex-transitive distance-regular graph with intersection array $\{119,100,15;1,20,105\}$ has solvable automorphism group.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2018_15_a61,
     author = {M. M. Isakova and A. A. Makhnev},
     title = {On automorphisms of a distance-regular graph with intersection array  $\{119,100,15;1,20,105\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {198--204},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a61/}
}
TY  - JOUR
AU  - M. M. Isakova
AU  - A. A. Makhnev
TI  - On automorphisms of a distance-regular graph with intersection array  $\{119,100,15;1,20,105\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 198
EP  - 204
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a61/
LA  - ru
ID  - SEMR_2018_15_a61
ER  - 
%0 Journal Article
%A M. M. Isakova
%A A. A. Makhnev
%T On automorphisms of a distance-regular graph with intersection array  $\{119,100,15;1,20,105\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 198-204
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a61/
%G ru
%F SEMR_2018_15_a61
M. M. Isakova; A. A. Makhnev. On automorphisms of a distance-regular graph with intersection array  $\{119,100,15;1,20,105\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 198-204. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a61/