Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 106-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we investigate expansions of 1-indiscernible countably categorical weakly o-minimal structures by an equivalence relation. We present a criterion when such an expansion preserves both countable categoricity and weak o-minimality.
Keywords: weak o-minimality, countable categoricity, convexity rank, expansion of models.
@article{SEMR_2018_15_a6,
     author = {S. S. Baizhanov and B. Sh. Kulpeshov},
     title = {Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {106--114},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/}
}
TY  - JOUR
AU  - S. S. Baizhanov
AU  - B. Sh. Kulpeshov
TI  - Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 106
EP  - 114
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/
LA  - en
ID  - SEMR_2018_15_a6
ER  - 
%0 Journal Article
%A S. S. Baizhanov
%A B. Sh. Kulpeshov
%T Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 106-114
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/
%G en
%F SEMR_2018_15_a6
S. S. Baizhanov; B. Sh. Kulpeshov. Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 106-114. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/

[1] H.D. Macpherson, D. Marker, C. Steinhorn, “Weakly o-minimal structures and real closed fields”, Transactions of The American Mathematical Society, 352:12 (2000), 5435–5483 | DOI | MR

[2] B.Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties”, The Journal of Symbolic Logic, 63:4 (1998), 1511–1528 | DOI | MR

[3] S.S. Baizhanov, B.Sh. Kulpeshov, “Invariant properties at expanding models of quite o-minimal theories”, News of National Academy of Sciences of the Republic of Kazakhstan, physical and mathemtical series, 1 (311) (2017), 65–71

[4] S.S. Baizhanov, B.Sh. Kulpeshov, “Expansion of models of quite o-minimal theories by unary predicates”, Theses of the annual scientific April conference of Institute of Mathematics and Mathematical Modelling (SC MES RK, Almaty, 2017), 16–18

[5] S.S. Baizhanov, B.Sh. Kulpeshov, “Expansion of models of countably categorical weakly o-minimal theories by unary predicates”, Theses of the International conference "Actual Problems of Pure and Applied Mathematics" devoted to the 100-anniversary of academician A. D. Taimanov (Almaty, 2017), 13–15

[6] B.S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family unary predicates”, The Journal of Symbolic Logic, 66:3 (2001), 1382–1414 | DOI | MR

[7] B.Sh. Kulpeshov, “Countably categorical quite o-minimal theories”, Journal of Mathematical Sciences, 188:4 (2013), 387–397 | DOI | MR

[8] B. Herwig, H. D. Macpherson, G. Martin, A. Nurtazin, J. K. Truss, “On $\aleph_0$-categorical weakly o-minimal structures”, Annals of Pure and Applied Logic, 101:1 (2000), 65–93 | DOI | MR

[9] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly o-minimal theories”, Annals of Pure and Applied Logic, 145:3 (2007), 354–367 | DOI | MR