Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a6, author = {S. S. Baizhanov and B. Sh. Kulpeshov}, title = {Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {106--114}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/} }
TY - JOUR AU - S. S. Baizhanov AU - B. Sh. Kulpeshov TI - Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations JO - Sibirskie èlektronnye matematičeskie izvestiâ PY - 2018 SP - 106 EP - 114 VL - 15 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/ LA - en ID - SEMR_2018_15_a6 ER -
%0 Journal Article %A S. S. Baizhanov %A B. Sh. Kulpeshov %T Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations %J Sibirskie èlektronnye matematičeskie izvestiâ %D 2018 %P 106-114 %V 15 %I mathdoc %U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/ %G en %F SEMR_2018_15_a6
S. S. Baizhanov; B. Sh. Kulpeshov. Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 106-114. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/
[1] H.D. Macpherson, D. Marker, C. Steinhorn, “Weakly o-minimal structures and real closed fields”, Transactions of The American Mathematical Society, 352:12 (2000), 5435–5483 | DOI | MR
[2] B.Sh. Kulpeshov, “Weakly o-minimal structures and some of their properties”, The Journal of Symbolic Logic, 63:4 (1998), 1511–1528 | DOI | MR
[3] S.S. Baizhanov, B.Sh. Kulpeshov, “Invariant properties at expanding models of quite o-minimal theories”, News of National Academy of Sciences of the Republic of Kazakhstan, physical and mathemtical series, 1 (311) (2017), 65–71
[4] S.S. Baizhanov, B.Sh. Kulpeshov, “Expansion of models of quite o-minimal theories by unary predicates”, Theses of the annual scientific April conference of Institute of Mathematics and Mathematical Modelling (SC MES RK, Almaty, 2017), 16–18
[5] S.S. Baizhanov, B.Sh. Kulpeshov, “Expansion of models of countably categorical weakly o-minimal theories by unary predicates”, Theses of the International conference "Actual Problems of Pure and Applied Mathematics" devoted to the 100-anniversary of academician A. D. Taimanov (Almaty, 2017), 13–15
[6] B.S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family unary predicates”, The Journal of Symbolic Logic, 66:3 (2001), 1382–1414 | DOI | MR
[7] B.Sh. Kulpeshov, “Countably categorical quite o-minimal theories”, Journal of Mathematical Sciences, 188:4 (2013), 387–397 | DOI | MR
[8] B. Herwig, H. D. Macpherson, G. Martin, A. Nurtazin, J. K. Truss, “On $\aleph_0$-categorical weakly o-minimal structures”, Annals of Pure and Applied Logic, 101:1 (2000), 65–93 | DOI | MR
[9] B. Sh. Kulpeshov, “Criterion for binarity of $\aleph_0$-categorical weakly o-minimal theories”, Annals of Pure and Applied Logic, 145:3 (2007), 354–367 | DOI | MR