Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 106-114

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we investigate expansions of 1-indiscernible countably categorical weakly o-minimal structures by an equivalence relation. We present a criterion when such an expansion preserves both countable categoricity and weak o-minimality.
Keywords: weak o-minimality, countable categoricity, convexity rank, expansion of models.
@article{SEMR_2018_15_a6,
     author = {S. S. Baizhanov and B. Sh. Kulpeshov},
     title = {Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {106--114},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/}
}
TY  - JOUR
AU  - S. S. Baizhanov
AU  - B. Sh. Kulpeshov
TI  - Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 106
EP  - 114
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/
LA  - en
ID  - SEMR_2018_15_a6
ER  - 
%0 Journal Article
%A S. S. Baizhanov
%A B. Sh. Kulpeshov
%T Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 106-114
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/
%G en
%F SEMR_2018_15_a6
S. S. Baizhanov; B. Sh. Kulpeshov. Expanding 1-indiscernible countably categorical weakly o-minimal theories by equivalence relations. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 106-114. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a6/