On automorphisms of a distance-regular graph with intersection array $\{96,76,1;1,19,96\}$
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 167-174.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study automorphisms of a hypothetical distance-regular graph with intersection array $\{96,76,1;1,19,96\}$. It is proved that a distance-regular graph with intersection array $\{96,76,1;1,19,96\}$ is not vertex-transitive.
Keywords: distance-regular graph
Mots-clés : automorphism.
@article{SEMR_2018_15_a59,
     author = {A. A. Makhnev and M. Kh. Shermetova},
     title = {On automorphisms of a distance-regular graph with intersection array  $\{96,76,1;1,19,96\}$},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {167--174},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a59/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. Kh. Shermetova
TI  - On automorphisms of a distance-regular graph with intersection array  $\{96,76,1;1,19,96\}$
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 167
EP  - 174
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a59/
LA  - ru
ID  - SEMR_2018_15_a59
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. Kh. Shermetova
%T On automorphisms of a distance-regular graph with intersection array  $\{96,76,1;1,19,96\}$
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 167-174
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a59/
%G ru
%F SEMR_2018_15_a59
A. A. Makhnev; M. Kh. Shermetova. On automorphisms of a distance-regular graph with intersection array  $\{96,76,1;1,19,96\}$. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 167-174. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a59/

[1] A.A. Makhnev, D.V. Paduchikh, “Distance-regular graphs, in which neighbourhoods of vertices are strongly regular with the second eigenvalue at most 3”, Doklady Mathematics, 92:2 (2015), 568–571 | DOI | MR

[2] K.S. Efimov, A.A. Makhnev, “Automorphisms of distance-regular graph with intersection array $\{25,16,1;1,8,25\}$”, Ural Mathematical Journal, 3:1 (2017), 27–32 | DOI | MR

[3] I.N. Belousov, “On automorphisms of a distance-regular graph with intersection array $\{99,84,1;1,12,99\}$”, Proceedings of the Steklov Institute of Mathematics, 297:1 (2017), S19–S26 | MR

[4] A.A. Makhnev, P.S. Ageev, “Automorphisms of a graph with intersection array $\{99, 84, 1; 1, 14, 99\}$”, Doklady Mathematics, 90:2 (2014), 525–528 | DOI | MR

[5] K.S. Efimov, A.A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{99,84,30;1,6,54\}$”, Diskr. Mat., 29 (2017), 10–16 | DOI | MR

[6] K.S. Efimov, A.A. Makhnev, “Automorphisms of a distance-regular graph with intersection array $\{115,96,30,1;1,10,96,115\}$”, Siberian Electronic Mathematical Reports, 12 (2015), 795–801 | MR

[7] A.A. Makhnev, D.V. Paduchikh, M.S. Samoilenko, “Automorphisms of a distance-regular graph with intersection array $\{115,96,30,1;1,10,96,115\}$”, Doklady Mathematics, 90:3 (2014), 692–696 | DOI | MR

[8] V. V. Bitkina, A. A. Makhnev, “On automorphisms of a distance-regular graph with intersection array $\{125,96,1;1,48,125\}$”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159 (2017), 13–20 | MR

[9] A. M. Kagazezheva, “Automorphisms of a distance-regular graph with intersection array $\{169,126,1;1,42,169\}$”, Siberian Electronic Mathematical Reports, 12 (2015), 318–327 | MR

[10] I. N. Belousov, A. A. Makhnev, “Automorphisms of a distance-regular graph with intersection array $\{176,150,1;1,25,176\}$”, Siberian Electronic Mathematical Reports, 13 (2016), 754–761 | MR

[11] L. Yu. Tsiovkina, “On the local structure of distance-regular Mathon graphs”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, 2013, 293–298 | DOI | MR

[12] P.J. Cameron, Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999 | MR

[13] C.D. Godsil, A.D. Henzel, “Distance-regular covers of the complete graphs”, J. Comb. Theory, ser. B, 56:2 (1992), 205–238 | DOI | MR

[14] A.L. Gavrilyuk, A.A. Makhnev, “On automorphisms of distance-regular graphs with intersection array $\{56, 45, 1; 1, 9, 56\}$”, Doklady Mathematics, 81:3 (2010), 439–442 | DOI | MR

[15] A.V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Siberian Electronic Mathematical Reports, 6 (2009), 1–12 | MR