Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a57, author = {D. A. Derevnin and A. D. Mednykh}, title = {Mirror symmetries of hyperbolic tetrahedral manifolds}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1850--1856}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a57/} }
D. A. Derevnin; A. D. Mednykh. Mirror symmetries of hyperbolic tetrahedral manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1850-1856. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a57/
[1] N.K. Al-Jubouri, “On non-orientable hyperbolic 3-manifolds”, Quart. J. Math., 31:1 (1980), 9–18 | DOI | MR | Zbl
[2] P. Buser, A. Mednykh, A. Vesnin, “Lambert cube and the Löbell polyhedron revisited”, Adv. Geom., 12:3 (2012), 525–548 | DOI | MR | Zbl
[3] R. K. W. Roeder, “Constructing hyperbolic polyhedra using Newton's method”, Experimental. Math., 16:4 (2007), 463–492 | DOI | MR | Zbl
[4] A.D. Mednykh, “Automorphism groups of three-dimensional hyperbolic manifolds”, Soviet Math. Dokl., 32:3 (1985), 633–636 | MR | Zbl
[5] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Park,, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russian Math. Surveys, 72:2 (2017), 199–256 | DOI | MR | Zbl
[6] F. Löbell, “Beispiele geschlossener dreidimensionaler Cliord-Kleinischer Räume negativer Krümmung”, Ber. Verh. Sächs. Akad. Leipzig Math.-Phys. Kl., 83 (1931), 167–174 | Zbl
[7] H. Seifert, C. Weber, “Die beiden Dodekaederräume”, Math. Z., 37:1 (1933), 237–253 | DOI | MR
[8] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl
[9] V. M. Buchstaber, T. E. Panov, “On manifolds defined by 4-colourings of simple 3-polytopes”, Russian Math. Surveys, 71:6 (2016), 1137–1139 | DOI | MR | Zbl
[10] A. G. Khovanskii, “Hyperplane sections of polyhedra, toroidal manifolds, and discrete groups in Lobachevskii space”, Funct. Anal. Appl., 20:1 (1986), 41–50 | DOI | MR
[11] H. Nakayama, Y. Nishimura, “The orientability of small covers and coloring simple polytopes”, Osaka J. Math., 42:1 (2005), 243–256 | MR | Zbl
[12] D. A. Derevnin, A. D. Mednykh, “Discrete extensions of the Lanner groups”, Dokl. Akad. Nauk, 361:4 (1998), 439–442 | MR | Zbl
[13] A. M. Macbeath, “Action of automorphisms of a compact Riemann surface on the first homology group”, Bull. London Math. Soc., 5:1 (1973), 103–108 | DOI | MR | Zbl
[14] C. Maclachlan, A. Reid,, “The arithmetic structure of tetrahedral groups of hyperbolic isometries”, Mathematika, 36:2 (1990), 221–240 | DOI | MR
[15] A. D. Mednykh, “The isometry group of the hyperbolic space of a Seifert-Weber dodecahedron”, Sibirsk. Mat. Zh., 28:5 (1987), 134–144 | MR
[16] A. D. Mednykh, “Automorphism groups of three-dimensional hyperbolic manifolds”, Algebra and Analysis: Proc. 2nd Siberian Winter School (1989, Tomsk), AMS Transl. Ser. 2, 151, Providence, 1992, 107–119 | MR | Zbl
[17] F. Lanner, “On Complexes with Transitive Groups of Automorphisms”, Commun. Sem. Math. Univ. Lund, 11 (1950) | MR | Zbl
[18] L. A. Best, “On torsion free discrete subgroups of $PSL(2,\mathbb{C})$ with compact orbit space”, Can. J. Math., 23 (1971), 451–460 | DOI | MR | Zbl
[19] E. B. Vinberg, “Some examples of crystallographic groups in Lobachevskii spaces”, Mat. Sb., 78:4 (1969), 633–639 | MR
[20] A. Yu. Vesnin, “Three-dimensional hyperbolic manifolds of Löbell type”, Sib. Math. J., 28:5 (1987), 731–734 | DOI | MR | Zbl
[21] A. Yu. Vesnin, “Volumes of hyperbolic Löbell 3-manifolds”, Math. Notes, 64:1 (1998), 15–19 | DOI | MR
[22] Singerman D., “Symmetries of Riemann surfaces with large automorphism group”, Math. Ann., 210:1 (1974), 17–32 | DOI | MR | Zbl