Mirror symmetries of hyperbolic tetrahedral manifolds
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1850-1856

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Lambda$ be the group generated by reflections in faces of a Coxeter tetrahedron in the hyperbolic space $\mathbb{H}^3$. A tetrahedral manifold is a hyperbolic manifold $\mathcal{M}=\mathbb{H}^3/\Gamma$ uniformized by a torsion free subgroup $\Gamma$ of the group $\Lambda$. By a mirror symmetry we mean an orientation reversing isometry of the manifold acting by reflection. The aim of the paper to investigate mirror symmetries of the tetrahedral manifolds.
Keywords: hyperbolic space, isometry group, hyperbolic manifolds.
Mots-clés : automorphism group
@article{SEMR_2018_15_a57,
     author = {D. A. Derevnin and A. D. Mednykh},
     title = {Mirror symmetries of hyperbolic tetrahedral manifolds},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1850--1856},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a57/}
}
TY  - JOUR
AU  - D. A. Derevnin
AU  - A. D. Mednykh
TI  - Mirror symmetries of hyperbolic tetrahedral manifolds
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1850
EP  - 1856
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a57/
LA  - en
ID  - SEMR_2018_15_a57
ER  - 
%0 Journal Article
%A D. A. Derevnin
%A A. D. Mednykh
%T Mirror symmetries of hyperbolic tetrahedral manifolds
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1850-1856
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a57/
%G en
%F SEMR_2018_15_a57
D. A. Derevnin; A. D. Mednykh. Mirror symmetries of hyperbolic tetrahedral manifolds. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1850-1856. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a57/