Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SEMR_2018_15_a56, author = {E. E. Skurikhin}, title = {Categorical topology of normal structures}, journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a}, pages = {1719--1734}, publisher = {mathdoc}, volume = {15}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a56/} }
E. E. Skurikhin. Categorical topology of normal structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1719-1734. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a56/
[1] A. Grothendieck, M. Artin, J.-L. Verdier), Seminaire Geometrie Algebrique 4 [SGA4], Theorie de topos et cohomologie etale de schemas, Lect. Notes in Math., 269–270, Springer, Heidelberg, 1972 | DOI | MR | Zbl
[2] M. Artin, Grothendieck topologies, Harvard Math. Dept. lecture Notes, Harvard University, Harvard, 1962 | Zbl
[3] E. E. Skurikhin, “Sheaf Cohomology and Dimension of Ordered Sets”, Tr. Mat. Inst. Steklova, 239, 2002, 289–317 | MR | Zbl
[4] E. E. Skurikhin, Sheaves on Normal and Paracompact Lattices, Dalnauka, Vladivostok, 1998
[5] E. E. Skurikhin, Sheaf Cohomology and Dimensions of Partially Ordered Sets, Dalnauka, Vladivostok, 2004
[6] E. E. Skurikhin, Cohomology and Dimensions of Topological and Uniform Spaces, Dalnauka, Vladivostok, 2008 | MR
[7] E. E. Skurikhin, “On a class of categorical topological spaces”, Uspekhi Mat. Nauk, 63:1 (2008), 167–168 | DOI | MR | Zbl
[8] E. E. Skurikhin, “Sheaf cohomology and the dimension of uniform spaces”, Uspekhi Mat. Nauk, 58:4 (2003), 157–158 | DOI | MR | Zbl
[9] E. E.Skurikhin, A. G. Sukhonos, “Grothendieck topologies on Chu spaces”, Mat. Tr., 11:2 (2008), 159–186 | MR | Zbl