Categorical topology of normal structures
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1719-1734.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of the theory of categorical topological spaces are applied to sheaf cohomology of normal structures and uniform spaces.
Keywords: Grothendieck topology, Sheaf cohomology, categorical topological space, uniform space.
@article{SEMR_2018_15_a56,
     author = {E. E. Skurikhin},
     title = {Categorical topology of normal structures},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1719--1734},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a56/}
}
TY  - JOUR
AU  - E. E. Skurikhin
TI  - Categorical topology of normal structures
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1719
EP  - 1734
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a56/
LA  - ru
ID  - SEMR_2018_15_a56
ER  - 
%0 Journal Article
%A E. E. Skurikhin
%T Categorical topology of normal structures
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1719-1734
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a56/
%G ru
%F SEMR_2018_15_a56
E. E. Skurikhin. Categorical topology of normal structures. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1719-1734. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a56/

[1] A. Grothendieck, M. Artin, J.-L. Verdier), Seminaire Geometrie Algebrique 4 [SGA4], Theorie de topos et cohomologie etale de schemas, Lect. Notes in Math., 269–270, Springer, Heidelberg, 1972 | DOI | MR | Zbl

[2] M. Artin, Grothendieck topologies, Harvard Math. Dept. lecture Notes, Harvard University, Harvard, 1962 | Zbl

[3] E. E. Skurikhin, “Sheaf Cohomology and Dimension of Ordered Sets”, Tr. Mat. Inst. Steklova, 239, 2002, 289–317 | MR | Zbl

[4] E. E. Skurikhin, Sheaves on Normal and Paracompact Lattices, Dalnauka, Vladivostok, 1998

[5] E. E. Skurikhin, Sheaf Cohomology and Dimensions of Partially Ordered Sets, Dalnauka, Vladivostok, 2004

[6] E. E. Skurikhin, Cohomology and Dimensions of Topological and Uniform Spaces, Dalnauka, Vladivostok, 2008 | MR

[7] E. E. Skurikhin, “On a class of categorical topological spaces”, Uspekhi Mat. Nauk, 63:1 (2008), 167–168 | DOI | MR | Zbl

[8] E. E. Skurikhin, “Sheaf cohomology and the dimension of uniform spaces”, Uspekhi Mat. Nauk, 58:4 (2003), 157–158 | DOI | MR | Zbl

[9] E. E.Skurikhin, A. G. Sukhonos, “Grothendieck topologies on Chu spaces”, Mat. Tr., 11:2 (2008), 159–186 | MR | Zbl