On approximation of plane curves by conics
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1576-1594.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents methods for a plane curve approximation by conics. The paper is divided into two parts: 1) approximation methods for fixed ends and fixed angles conditions 2) local curve approximation at a point. In the first part, for a given arc of a plane curve with monotonic curvature, we construct a conic approximation of the same length and give a criterion for the type of this conic. In the second part, we investigate the osculating conic and obtain formulae for its geometric parameters. We also derive the characteristic differential equation for conics and derive the necessary and sufficient condition on conic's type.
Keywords: Plane curve approximation, osculating conics.
@article{SEMR_2018_15_a54,
     author = {A. V. Slovesnov},
     title = {On approximation of plane curves by conics},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {1576--1594},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a54/}
}
TY  - JOUR
AU  - A. V. Slovesnov
TI  - On approximation of plane curves by conics
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 1576
EP  - 1594
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a54/
LA  - ru
ID  - SEMR_2018_15_a54
ER  - 
%0 Journal Article
%A A. V. Slovesnov
%T On approximation of plane curves by conics
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 1576-1594
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a54/
%G ru
%F SEMR_2018_15_a54
A. V. Slovesnov. On approximation of plane curves by conics. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 1576-1594. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a54/

[1] I. Kh. Sabitov, A.V. Slovesnov, “Approximation of plane curves by circular arcs”, Computational Mathematics and Mathematical Physics, 50:8 (2010), 1347–1356 | DOI | MR | Zbl

[2] G.M. Fichtengolts, Differential and integral calculus, v. I, Fizmatlit, M., 1962

[3] Su Buchin, Affine Differential Geometry, Science Press, Beijing, 1983 | MR | Zbl

[4] R. Perrin, “Sur quelques conséquences géométriques de l'équation différentielle des coniques”, Bulletin de la Société Mathématique de France, 31 (1903), 54–64 | DOI | MR | Zbl

[5] E. Ghys, S. Tabachnikov, V. Timorin, “Osculating curves: around the Tait-Kneser theorem”, The Mathematical Intelligencer, 35:1 (2013), 61–66 | DOI | MR | Zbl

[6] M.Ya. Vygodskii, Differential Geometry, GITTL, M., 1949 | MR