On a problem in the bendings theory of negatively curved surfaces
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 890-893

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for negatively curved surfaces one can have the following phenomenon: there exist two non-congruent isometric surfaces with a common open set.
Keywords: isometry, surfaces with negative curvature, common open domains.
@article{SEMR_2018_15_a50,
     author = {I. Kh. Sabitov},
     title = {On a problem in the bendings theory of negatively curved surfaces},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {890--893},
     publisher = {mathdoc},
     volume = {15},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a50/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - On a problem in the bendings theory of negatively curved surfaces
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 890
EP  - 893
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a50/
LA  - ru
ID  - SEMR_2018_15_a50
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T On a problem in the bendings theory of negatively curved surfaces
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 890-893
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a50/
%G ru
%F SEMR_2018_15_a50
I. Kh. Sabitov. On a problem in the bendings theory of negatively curved surfaces. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 890-893. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a50/