On the flat curves with affine congruent arcs
Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 882-889 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved in the article that the only curves with affine congruent arcs in the affine plane are straight lines, parabolas or their connected parts.
Keywords: curve with affine congruent arcs, straight line
Mots-clés : parabola.
@article{SEMR_2018_15_a49,
     author = {I. V. Polikanova},
     title = {On the flat curves with affine congruent arcs},
     journal = {Sibirskie \`elektronnye matemati\v{c}eskie izvesti\^a},
     pages = {882--889},
     year = {2018},
     volume = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SEMR_2018_15_a49/}
}
TY  - JOUR
AU  - I. V. Polikanova
TI  - On the flat curves with affine congruent arcs
JO  - Sibirskie èlektronnye matematičeskie izvestiâ
PY  - 2018
SP  - 882
EP  - 889
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/SEMR_2018_15_a49/
LA  - ru
ID  - SEMR_2018_15_a49
ER  - 
%0 Journal Article
%A I. V. Polikanova
%T On the flat curves with affine congruent arcs
%J Sibirskie èlektronnye matematičeskie izvestiâ
%D 2018
%P 882-889
%V 15
%U http://geodesic.mathdoc.fr/item/SEMR_2018_15_a49/
%G ru
%F SEMR_2018_15_a49
I. V. Polikanova. On the flat curves with affine congruent arcs. Sibirskie èlektronnye matematičeskie izvestiâ, Tome 15 (2018), pp. 882-889. http://geodesic.mathdoc.fr/item/SEMR_2018_15_a49/

[1] I.V. Polikanova, “Affine congruence of parabolic arcs”, Collected articles of scientific conference «Lomonosov Readings in Altay: fundamental problems of science and education» (Barnaul, 11–14 November, 2014), 344–346

[2] I.V. Polikanova, “On the curves with a fixed maximum of the intersections with hyperplanes”, Proceedings of the Seventeenth Regional Conference on Mathematics «MAR – 2014», dedicated to the 40th anniversary of the Faculty of Mathematics and Information Technology, Alt. un-ty Press, Barnaul, 2014, 33–34

[3] I.V. Polikanova, “Some properties of curves with affine congruet arcs”, Proceedings of the Seminar on geometry and mathematical modeling, v. 2, Alt. un-ty Press, Barnaul, 2016, 55–61

[4] L.S. Atanasian, V.T. Bazilev, Geometry, in 2 p., v. 1, KNORUS, M., 2015

[5] I. Bakelman, A. Verner, B. Kantor, Introduction to differetial geometry «as a whole», «Nauka», M., 1973 | MR

[6] N. Bourbaki, General topology (Topological groups. Numbers and related groups and spaces), «Nauka», M., 1969 | MR

[7] K. Leichtweis, Convex sets, «Nauka», M., 1985 | MR | Zbl